Tính D= |97\(\frac{2}{3}\) -125 \(\frac{3}{5}\)|+97\(\frac{2}{5}\) -125\(\frac{1}{3}\)
\(|97\frac{2}{3}-125\frac{3}{5}|+97\frac{2}{5}-125\frac{1}{3}\)
\(\left|97\frac{2}{3}-125\frac{3}{5}\right|+97\frac{2}{5}-125\frac{1}{3}\)
\(\left|97\frac{2}{3}-125\frac{3}{5}\right|+97\frac{2}{3}-125\frac{3}{5}\)
\(=\left|-\frac{419}{15}\right|+\left(-\frac{419}{15}\right)\)
\(=\frac{419}{15}+\left(-\frac{419}{15}\right)=0\)
học tốt ~~
a) \(\frac{\left(-1\right)^3}{15}+\left(-\frac{2}{3}\right):2\frac{2}{3}-\left|-\frac{5}{6}\right|\)
b) \(1\frac{5}{13}-0,\left(3\right)-\left(1\frac{4}{9}+\frac{18}{13}-\frac{1}{3}\right)\)
c) \(\left|97\frac{2}{3}-125\frac{3}{5}\right|+97\frac{2}{5}-125\frac{1}{3}\)
d) \(\frac{2\cdot6^9-2^5\cdot18^4}{2^2\cdot6^8}\)
Tính = cák hợp lý:
a) \(139\frac{5}{7}:\frac{2}{3}-138\frac{2}{7}:\sqrt{\frac{4}{9}}\)
b) \(\left(\frac{-5}{11}:\frac{13}{18}-\frac{5}{11}:\frac{13}{5}\right)+\frac{-1}{33}\)
c) \(\left|97\frac{2}{3}-125\frac{3}{5}\right|+97\frac{2}{5}-125\frac{1}{3}\)
a, \(139\frac{5}{7}:\frac{2}{3}−138\frac{2}{7}:\sqrt{\frac{4}{9}} \)
= \(139\frac{5}{7}:\frac{2}{3}−138\frac{2}{7}:\frac{2}{3}\)
= \((139\frac{5}{7}−138\frac{2}{7}):\frac{2}{3}\)
= \(1\frac{3}{7}:\frac{2}{3}\)
= \(2\frac{1}{7}\)
b, \((\frac{-5}{11}:\frac{13}{18}-\frac{5}{11}:\frac{13}{5})+\frac{-1}{33} \)
= \((\frac{5}{11}.\frac{-18}{13}-\frac{5}{11}.\frac{5}{13})+\frac{-1}{33}\)
= \([\frac{5}{11}.(\frac{-18}{13}-\frac{5}{13})]+\frac{-1}{33}\)
= \((\frac{5}{11}.\frac{-23}{13})+\frac{-1}{33}\)
= \(\frac{-155}{143}+\frac{-1}{33}\)
= \(\frac{-358}{429} \)
c, \(∣97\frac{2}{3}-125\frac{3}{5}∣+97\frac{2}{3}-125\frac{3}{5} \)
= \(∣\frac{-419}{15}∣+97\frac{2}{3}-125\frac{3}{5}\)
= \(\frac{419}{15}+97\frac{2}{3}-125\frac{3}{5}\)
= \(0\)
Tick cho mình nha!!!
Chúc bạn học tốt.
tính\(\frac{\frac{125}{8}+\frac{125}{97}+\frac{125}{576}+\frac{250}{991}}{\frac{25}{8}+\frac{25}{97}+\frac{25}{576}+\frac{50}{991}}\)
\(\frac{\frac{125}{8}+\frac{125}{97}+\frac{125}{576}+\frac{250}{991}}{\frac{25}{8}+\frac{25}{97}+\frac{25}{576}+\frac{50}{991}}\)=\(\frac{250.\left(\frac{1}{8}+\frac{1}{97}+\frac{1}{576}+\frac{1}{991}\right)}{50.\left(\frac{1}{8}+\frac{1}{97}+\frac{1}{576}+\frac{1}{991}\right)}\)=\(\frac{250}{50}\)=5
Tính giá trị của biểu thức:
\(A\)=\(\frac{4^5.4^6}{2^{21}}\); \(B=\frac{8^5+16^{13}}{4^3}\); \(C=\frac{125^{12}}{5^{13}.25^{10}}\)
\(D=\frac{81^{11}.3^{17}}{27^{10}.9^{15}}\); \(E=\frac{15.3^{11}+4.27^4}{97}\); \(F=\frac{5.2^{13}.4^{11}-16^9}{3.\left(2^{17}\right)^2}\)
Tính
A=\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1\cdot99}+\frac{1}{3\cdot97}+\frac{1}{5\cdot95}+...+\frac{1}{97\cdot3}+\frac{1}{99\cdot1}}\)
tính
\(P=\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1}.99+\frac{1}{3}.97+\frac{1}{5}.95+...+\frac{1}{97}.3+\frac{1}{99}.1}\)
Lời giải:
** Sửa đề: Chỗ $\frac{1}{1}$ ở mẫu chuyển thành $\frac{1}{2}$
$\frac{1}{1}.99+\frac{1}{3}.97+\frac{1}{5}.95+....+\frac{1}{97}.3+\frac{1}{99}.1$
$=50+(\frac{97}{3}+1)+(\frac{95}{5}+1)+....+(\frac{3}{97}+1)+(\frac{1}{99}+1)$
$=50+\frac{100}{3}+\frac{100}{5}+...+\frac{100}{97}+\frac{100}{99}$
$=100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})$
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})}=\frac{1}{100}\)
Tính:
a) A=\(\frac{3-\frac{1}{2}+\frac{1}{4}}{\frac{2}{3}-\frac{5}{6}+\frac{-3}{4}}\)
b) B=\(\frac{8-\frac{8}{5}+\frac{8}{25}-\frac{8}{125}}{9-\frac{9}{5}+\frac{9}{25}-\frac{9}{125}}:\frac{161616}{151515}\)
Ai nhanh và đúng nhất mk sẽ tick cho
tk mn