P=2 phần x trừ ((x^2 phần x^+xy)-(x^2-y^2 phần xy)-(y^2 phần xy+y^2))(x+y phần x^2 +xy+y^2)
tính p..
giúp mik với mấy bn ơi.
B1 :tìm x, y
a, xy+x+y=2
b, xy-10+5x-3y=2
c, xy-1=3x+5y+4
d, 3x+4y-xy=15
e, xy+5x+y+4
Các bn nhớ giải rõ giúp mik, phần lập bảng giá trị mik sẽ tự làm, ví dụ như mẫu sau:
VD: xy+14+2y+7x=-10
=(xy + 2y) + ( 14+7x) = -10
= y(2+x) + 7(2+x) = -10
(2+x) . ( y+7) =10 { phần bảng giá trị mik sẽ tự làm tiếp)
Giúp mình với:
Tính giá trị biểu thức A tại x= -1 , y=2
A=(-x^2y- 2 phần 7 nhân x^3 - 8 xy) - (- x^2 y + 5 phần 7 x^3 - xy + 4)+3
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Rút gọn biểu thức
a) x mũ 4 - xy mũ 3 phần 2 xy + y mũ 2 : x mũ 3 + x mũ y + xy mũ 2 phần 2 x + y
Bạn viết rõ hơn nhé :
\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
= \(\frac{x^4-xy^3}{2xy+y^2}.\frac{2x+y}{x^3+x^2y+xy^2}\)
= \(\frac{x.\left(x-y\right).\left(x^2+xy+y^2\right).\left(2x+y\right)}{y.\left(2x+y\right).x.\left(x^2+xy+y^2\right)}\)
= \(\frac{x-y}{y}\)
Chúc bạn học tốt !!!
Tìm x,y
a) x+y phần 2=x-y phần 3=y+1 phần 4
b) x phần 2=y phần 5 biết xy=20
giúp mình với!!!
a/ Thu gọn đơn thức (12/5.x^4 y^2).(5/9 xy^3xy) đó xác định phần hệ số, phần biến và bậc của đơn thức: b/ Tính giá trị của bieur thức 2 3 A x xy y = + − tại x y = = − 2; 1 c/ Tìm đa thức M, biết 2 2 2 2 (2 3 3 7) ( 3 7) x y xy x M x y xy y − + + − = − + + d/ Cho đa thức 2 P x ax x ( ) 2 1 = − + Tìm a, biết: P(2) 7 = Câu 3. (1,5 điểm) Cho các đa thức: A(x) = x3 + 3x2 – 4x – 12 B(x) = x3 – 3x2 + 4x + 18 a. Hãy tính: A(x) + B(x) và A(x) – B(x) b. Chứng tỏ x = – 2 là nghiệm của đa thức A(x) nhưng không là nghiệm của đa thức B(x)
Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)
x phần 4=y phần 27 và xy=112
2 phần x=3 phần y và xy = 96
Thu gọn các đơn thức, chỉ rõ phần hệ số, phần biến, và tìm bậc của mỗi đơn thức. A= ( 2/3.X²y)².3/2 .x²y.z B= -2/3.xy².1/2.xy³ . -x²y² C= (4/3.x²y.-2/3.Xy³)².(x²y)³
a: \(A=\dfrac{4}{9}x^4y^2\cdot\dfrac{3}{2}x^2yz=\dfrac{2}{3}x^6y^3z\)
Hệ số; biến;bậc lần lượt là 2/3; x^6y^3z;10
b: \(B=\dfrac{-2}{3}\cdot\dfrac{1}{2}\cdot\left(-1\right)\cdot xy^2\cdot xy^3\cdot x^2y^2=\dfrac{1}{3}x^4y^7\)
Hệ số;biến;bậc lần lượt là 1/3;x^4y^7;11
c: \(C=\left(-\dfrac{8}{9}x^3y^4\right)^2\cdot x^6y^3=\dfrac{64}{81}x^6y^8\cdot x^6y^3=\dfrac{64}{81}x^{12}y^{11}\)
Hệ số;biến;bậc lần lượt là 64/81; x^12y^11; 23
5x+y^2 phần x^2y -5y-x^2 phần xy^2
\(\dfrac{5x+y^2}{x^2y}-\dfrac{5y+x^2}{xy^2}\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}-\dfrac{x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3}{x^2y^2}-\dfrac{5xy+x^3}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)
\(=\dfrac{\left(5xy-5xy\right)+x^3+y^3}{x^2y^2}\)
\(=\dfrac{x^3+y^3}{x^2y^2}\)
\(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}=\dfrac{y\left(5x+y^2\right)}{y\cdot x^2y}-\dfrac{x\left(5y-x^2\right)}{x\cdot xy^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}=\dfrac{x^3+y^3}{x^2y^2}\) \(\left(x,y\ne0\right)\)
RÚT GỌN CÁC BIỂU THỨC SAU .
1).(1 phần a trừ căn a cộng 1 phần căn a trừ 1) chia căn a + 1 phần a - 2căn a+ 1
2). 2 trừ căn x phần căn x trừ 1 trừ 2 x cộng 3 căn x trừ 1 phần x cộng 2 căn x trừ 3 cộng căn x cộng 1 phần căn x cộng 3
3). Căn x trừ 3 phần 2 trừ căn x + căn x - 2 phần 3 + căn x - 9 - x phần x cộng căn x trừ 6
4). (Căn x + căn y phần 1 trừ căn xy cộng căn x trừ căn x phần 1 + căn xy )chia (x + xy phần 1 - xy)
5). (Căn x trừ 3 căn x phần 1 - căn x) nhân (căn x trừ 1 phần x căn x cộng 4 x + 4 căn x)
Xin lỗi em ko biết làm , em vẫn chưa lên lớp 9
1)\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)