Tìm x,y :
\(x+y=x.y=\frac{x}{y}\left(y\ne0\right)\)
Tìm hai số hữu tỉ x và y sao cho :
\(x-y=x.y=\frac{x}{y}\left(y\ne0\right)\)
Từ\(x\cdot y=\frac{x}{y}\)\(\Rightarrow y^2=\frac{x}{x}=1\)\(\Rightarrow y=1,y=-1\)
Mặt khác:Từ\(x-y=x\cdot y\Rightarrow\frac{x-y}{xy}=1\Rightarrow\frac{1}{y}-\frac{1}{x}=1\)
+) y=1=>\(1-\frac{1}{x}=1\Rightarrow0=\frac{1}{x}\)(VL)
+) y=-1=>\(-1-\frac{1}{x}=1\Rightarrow-2=\frac{1}{x}\Rightarrow x=-\frac{1}{2}\)
Vậy.........................
Chứng minh các đẳng thức sau:
a, \(\frac{3x}{x+y}=\frac{-3x\left(x-y\right)}{y^2-x^2}\left(x\ne-y,x\ne y\right)\)
b, \(\frac{x-2}{-x}=\frac{8xy^2}{12ay}\left(a\ne0,y\ne0\right)\)
c, \(\frac{x+y}{3a}=\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}\left(a\ne0,x\ne-y\right)\)
a) Biến đổi vế phải, ta có :\(\frac{-3x\left(x-y\right)}{y^2-x^2}=\frac{3x\left(x-y\right)}{x^2-y^2}=\frac{3x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{3x}{x+y}\) = vế trái \(\Rightarrowđpcm\)
c)Biến đổi vế phải ta có: \(\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=\frac{x+y}{3a}=vt\Rightarrowđpcm\)
bài 2 : rút gọn các phân thức sau :
a.\(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\)
b.\(\frac{x^2+4x+3}{2x+6}\left(x\ne-3\right)\)
c.\(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}\left(y\ne0;x+y\ne0\right)\)
d. \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\)
e. \(\frac{x^2-xy}{3xy-3y^2}\left(x\ne y,y\ne0\right)\)
f. \(\frac{4x^2-4xy}{5x^3-5x^2y}\left(x\ne0,x\ne y\right)\)
g. \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)
https://hoc24.vn/hoi-dap/question/697806.html
tìm x,y biết: \(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}=1\left(x,y\in Z,x\ne0,y\ne0\right)\)
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
Tìm x,y:
\(\frac{x}{3}=\frac{y}{6}\), x+y=x.y và \(x.y\ne0\)
Giúp mình với mình đang cần gấp
Nhớ giải chi tiết ra cho mình nhé
ta có :
\(\frac{x}{3}=\frac{y}{6}\Rightarrow\frac{x}{y}=\frac{3}{6}=\frac{1}{2}\)
\(\Rightarrow\frac{x}{y}=\frac{1}{2}\)
Vậy x = 1 ; y = 2.
tìm \(f:R\rightarrow R\)thỏa mãn : \(f\left(x\right)=\frac{x}{f\left(\frac{1}{x}\right)}\), \(x\ne0\)và \(f\left(x\right)+f\left(y\right)=1+f\left(x+y\right)\)với \(x\ne0,y\ne0\)
Tìm x,y thuộc Z biết:
a, \(2^{x+y}=2^x+2^y\)
b, \(x+y=x.y=x:y\left(y\ne0\right)\)
Giải nhanh giùm mình!!!!!
b) x+y=x.y
=) x=x.y-y=y.(x-1)
=) x:y=x-1 (1)
Vì x:y=x+y (2)
Từ (1) và (2) =) x-1=x+y
=) x-x=y+1
=) 0=y+1 =) y=0-1=-1
Thay vào (2) =) x:(-1)=x+(-1)
=) -x=x+(-1)
=) -x-x=-1
=)-2x=-1=)x=\(\frac{-1}{-2}=\frac{1}{2}\)
Vậy x=\(\frac{1}{2}\)và y=-1
Còn phần a mình không biết làm.
Tìm x,y thuộc Z:
a, \(2^{x+y}=2^x+2^y\)
b, \(x+y=x.y=x:y\left(y\ne0\right)\)
Làm nhanh giùm mình!!!
Tìm x biết
\(3^x+3^{x+2}=2430\)\(2^{x+3}-2^x=224\)Áp dụng công thức \(\left(x.y\right)^n=x^n.y^n\)
\(\left(\frac{x}{y}\right)^n=\frac{x^n}{y^n}\left(y\ne0\right)\)
1. \(3^x+3^{x+2}=2430\)
\(3^x\left(1+3^2\right)=2430\)
\(3^x.10=2430\)
\(3^x=243\)
\(3^x=3^5\)
\(x=5\)
2. \(2^{x+3}-2^x=224\)
\(2^x\left(2^3-1\right)=224\)
\(2^x.7=224\)
\(2^x=32\)
\(2^x=2^5\)
\(x=5\)
1. 3^x + 3^x+2 = 2430
3^x.1+3^x.3^2=2430
3^x.1+3^x.9=2430
3^x.(1+9)=2430
3^x.10=2430
3^x=2430:10
3^x=243
3^x=3^5
=> x=5
Vậy x =5
2. 2^x+3 - 2^x =224
2^x.2^3-2^x.1=224
2^x.8-2^x.1=224
2^x.(8-1)=224
2^x.7=224
2^x=224:7
2^x=32
2^x=2^5
=> x=5
Vậy x=5