\(\frac{32^{2x}}{11^{2x}}=81\)
32^2x/11^2x=81
"/" là "phần"
a)tính\(\left(0,4-\frac{2}{\sqrt{81}}-\frac{2}{11}\right):\left(1,4-\frac{7}{\sqrt{81}}+\frac{7}{11}\right)\)
b)tìm x biết: \(\left(2x-1\right)^2=|-\frac{5}{4}-1|\)
Tìm x
a) \(\frac{3}{5}^{2x+1}\)=\(\frac{81}{625}\)
b)\(\left(\frac{2}{3}^x\right)\). \(\left(\frac{2}{3}^3\right)\)=\(\frac{32}{243}\)
c)(2x-1)\(^2\)=(2x-1)\(^3\)
\(a)\)\(\left(\frac{3}{5}\right)^{2x+1}=\frac{81}{625}\)
\(\Leftrightarrow\)\(\left(\frac{3}{5}\right)^{2x+1}=\left(\frac{3}{5}\right)^4\)
\(\Leftrightarrow\)\(2x+1=4\)
\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)
\(b)\)\(\left(\frac{2}{3}\right)^x.\left(\frac{2}{3}\right)^3=\frac{32}{243}\)
\(\Leftrightarrow\)\(\left(\frac{2}{3}\right)^{x+3}=\left(\frac{2}{3}\right)^5\)
\(\Leftrightarrow\)\(x+3=5\)
\(\Leftrightarrow\)\(x=2\)
Vậy \(x=2\)
\(c)\)\(\left(2x-1\right)^2=\left(2x-1\right)^3\)
\(\Leftrightarrow\)\(\left(2x-1\right)^3-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-1-1\right)=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(2x-1\right)^2=0\\2x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\)
Vậy \(x=\frac{1}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~
tìm x biết: 33^2x : 11^2x =81
\(\Rightarrow\left(\dfrac{33}{11}\right)^{2x}=81\Rightarrow3^{2x}=3^4\Rightarrow x=2\)
33^2x/11^2x=81
tìm x
a) 23(20-2x)=4.25
b) 32+x=81
a) 2³.(20 - 2x) = 4.2⁵
8.(20 - 2x) = 4.32
8.(20 - 2x) = 128
20 - 2x = 128 : 8
20 - 2x = 16
2x = 20 - 16
2x = 4
x = 4 : 2
x = 2
b) 3²⁺ˣ = 81
3²⁺ˣ = 3⁴
2 + x = 4
x = 4 - 2
x = 2
Tìm GÍA TRỊ LỚN NHẤT
\(A=\frac{32-2x}{11-x}\)
tìm x thuộc Q , biết :
a, ( 2x - 1)^4 = 81
b, ( x - 1) ^ 5 = - 32
c, ( 2x - 1)^6 = ( 2x - 1)^8
a. (2x-1)4=81
=>(2x-1)4=34
=>2x-1=3
=>2x=3+1
=>2x=4
=>x=4:2
=>x=2
b.(x-1)5=-32
=>(x-1)5=(-2)5
=>x-1=-2
=>x=-2+1
=>x=-1
c.(2x-1)6=(2x-1)8
mà chỉ có: (-1)6=(-1)8; 06=08; 16=18
=> để (2x-1) \(\in\){-1;0;1} thì x \(\in\){0; 1/2; 1}
Tìm số hữu tỷ x, biết rằng:
a. (2x - 1)^4 = 81
b.(x - 1)^5 =-32
c. (2x - 1)^6 = (2x - 1)^8