Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dang Thi Lien
Xem chi tiết
Nguyễn Thanh Bình
Xem chi tiết
Lê Yên Hạnh
24 tháng 10 2016 lúc 15:39

\(1+^2+4^3+......+4^{10}+4^{11}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+.....+\left(4^{10}+4^{11}\right)\)

Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 5. Vậy tổng \(1+^2+4^3+......+4^{10}+4^{11}\) chia hết cho 5

\(7+7^2+7^3+.....+7^{102}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+....+\left(7^{101}+7^{102}\right)\)

Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 8. Vậy tổng \(7+7^2+7^3+.....+7^{102}\) chia hết cho 8

Trần Quỳnh Mai
24 tháng 10 2016 lúc 20:12

a, \(1+4+4^2+...+4^{11}\)

Đặt : \(S=1+4+4^2+...+4^{11}\)

Ta có : Số số hạng của dãy số S chính là số số hạng của dãy số cách đều từ 0 --> 11 mỗi số cách nhau 1 đơn vị

=> Số số hạng của S là : \(\frac{11-0}{1}+1=12\) ( số hạng )

Vậy ta có số nhóm là :

12 : 2 = 6 ( nhóm ) :

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{10}+4^{11}\right)\) ( 6 nhóm )

\(\Rightarrow S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{10}\left(1+4\right)\)

\(\Rightarrow S=1.5+4^2.5+...+4^{10}.5\)

\(\Rightarrow S=\left(1+4^2+...+4^{10}\right).5\)

Mà : \(1+4^2+...+4^{10}\in N\Rightarrow S⋮5\)

---------

Tương tự để chứng minh S chia hết cho 21 ta có số nhóm là :

12 : 3 = 4 ( nhóm )

\(S=\left(1+4+4^2\right)+...+\left(4^9+4^{10}+4^{10}\right)\) ( 4 nhóm )

\(\Rightarrow S=\left(1+4+4^2\right)+...+4^9\left(1+4+4^2\right)\)

\(\Rightarrow S=1.21+...+4^9.21\)

\(\Rightarrow S=\left(1+...+4^9\right).21\)

Mà : \(1+...+4^9\in N\Rightarrow S⋮21\)

b, \(7+7^2+7^3+...+7^{102}\)

Đặt : \(M=7+7^2+7^3+...+7^{102}\)

Ta có : Số số hạng của dãy số M chính là số số hạng của dãy số cách đều từ 1 --> 102 mỗi số cách nhau 1 đơn vị

=> Số số hạng của M là : \(\frac{102-1}{1}+1=102\) ( số hạng )

Vậy có tất cả số nhóm là :

102 : 2 = 51 ( nhóm )

\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{101}+7^{102}\right)\)

\(\Rightarrow M=\left(7+7^2\right)+7^2\left(7+7^2\right)+...+7^{100}\left(7+7^2\right)\)

\(\Rightarrow M=1.56+7^2.56+...+7^{100}.56\)

\(\Rightarrow M=\left(1+7^2+...+7^{100}\right).56\)

Vì : 56 = 8.7 . Mà : \(1+7^2+...+7^{100}\in N\Rightarrow M⋮8\)

Vũ Thị Hà Vi
Xem chi tiết
Thắng Nguyễn
17 tháng 4 2016 lúc 19:10

đặt A=1+1/2 mu2+1/3 mu2+1/4 mu2+....+1/100 mu2

đặt B=1/2.3+1/3.4+...+1/99.100

=1/1.2+1/2.3+1/3.4+...+1/99.100

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)

từ (1),(2),(3) =>A<2

ủng hộ nhé

den jay
Xem chi tiết
Cuộc đời nở hoa
14 tháng 12 2017 lúc 17:21

7^6+7^5-7^4

=7^4(7^2+7-1)

=7^4.55 chia hết cho 11

Vậy...

den jay
Xem chi tiết
Dũng Lê Trí
14 tháng 12 2017 lúc 9:56

\(7^6+7^5-7^4\)

\(=7^6+\left(7^5-7^4\right)\)

\(=7^6+\left[7\left(7^4\right)-7^4\right]\)

\(=7^6+\left(6\cdot7^4\right)\)

\(=7^4\cdot7^2+7^4\cdot6\)

\(=7^4\cdot\left(49+6\right)=7^4\cdot55\)

\(\Rightarrow7^4\cdot55⋮11\)

vu hoang long
Xem chi tiết
PHẠM THANH BÌNH
Xem chi tiết
Nguyễn Demon
Xem chi tiết
shitbo
27 tháng 1 2019 lúc 19:49

Vì: p là số nguyên tố >3

nên p chia 3 dư 1 hoặc 2 và chia 2 dư 1

=> p khác; 6k;6k+2;6k+3;6k+4 (chia hết cho 3 hoặc 2)

=> p có dạng 6k+1 hoặc 6k+5 (đpcm)

Nguyễn Demon
27 tháng 1 2019 lúc 19:51

ban giai het di nha mà dpcm la j vay

shitbo
27 tháng 1 2019 lúc 19:55

đpcm=điều phải chứng minh

hơn nx mấy câu này dễ nhác :>

Tiểu thư Quỳnh Liên
Xem chi tiết
Mai Chi Ma
20 tháng 11 2016 lúc 9:35

a) gọi số tự nhiên đó là A

A+1 thì chia hết cho 3;4;5

suy ra A+1 là BC (3;4;5)

A + 1 thuộc tập hợp: 60;120;180;240;......

A thuộc tập hợp : 59 ; 119;179;239;.......

Bạn tự làm nốt nhé