Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
what the fack
Xem chi tiết
Bích Phương
Xem chi tiết
Nguyễn Ngọc Anh Minh
25 tháng 11 2021 lúc 10:01

a/

Xét \(\Delta ABC\) có

MA=MB; NB=NC => MN là đường trung bình của \(\Delta ABC\Rightarrow MN=\frac{AC}{2}\) (1) và MN //AC (2)

Xét \(\Delta ADC\) có

QA=QD; PD=PC => PQ là đường trung bình của \(\Delta ABC\Rightarrow PQ=\frac{AC}{2}\)  (3) Và PQ // AC (4)

Từ (1) Và (3) => MN=PQ; từ (2) và (4) => MN // PQ => MNPQ là hình bình hành (tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Nếu MNPQ là hình chữ nhật \(\Rightarrow\widehat{QMN}=90^o\) (1)

Ta có MN // AC (2)

Xét tg ABD có 

MA=MB; QA=QD => QM là đường trung bình của tg ABD => QM // BD (3)

Gọi O là giao của MP và NQ. Từ  (2) và (3) \(\Rightarrow\widehat{AOB}=\widehat{QMN}=90^o\) (Góc có cạnh tương ứng //)

\(\Rightarrow AC\perp BD\) 

Vậy để MNPQ là HCN thì ABCD cần điều kiện là hai đường chéo vuông góc với nhau

c/

Nếu MNPQ là hình thoi => QM=MN (1)

Ta có QM là đường trung bình của tg ABD \(\Rightarrow QM=\frac{BD}{2}\) (2)

Ta cũng có \(MN=\frac{AC}{2}\left(cmt\right)\) (3)

Từ (1) (2) và (3) => AC=BD

Vậy để MNPQ là hình thoi thì ABCD cần điều kiện là hai đường chéo = nhau

Khách vãng lai đã xóa
Bích Phương
Xem chi tiết
Rhider
25 tháng 11 2021 lúc 8:54

Nối B với D
Xét ΔABD có :
AM = BM (gt)
AQ = DQ (gt)
=> QM là đường tb của ΔABD
=> QM // BD , QM = 1/2 BD(1)
Chứng minh tương tự ΔBCD
=> NP là đường tb của ΔBCD
=> NP // BD , NP = 1/2 BD (2)
Từ (1) và (2 ) => Tứ giác MNPQ là hình bình hành (dhnb)(đcpcm)
 

Bích Phương
Xem chi tiết
Trang Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2023 lúc 21:35

a: Xét ΔBAC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

Xét ΔDAC có DP/DC=DQ/DA

nên PQ//AC và PQ=AC/2

=>MN//PQ và MN=PQ

=>MNPQ là hình bình hành

b: Để MNPQ là hình thoi thì MN=MQ

=>AC=BD

Cỏ dại
Xem chi tiết
huongkarry
Xem chi tiết
An Nhiên
2 tháng 10 2017 lúc 8:27

lười gõ =_=

link ây : https://olm.vn/hoi-dap/question/423397.html

tự làm nha

An Nhiên
2 tháng 10 2017 lúc 8:33

a) Tam giác ABC có :

MA = MB (gt)

NB = NC (gt)

nên MN là đường trung bình của tam giác, do đó MN // AC và MN = AC

Chứng minh tương tự : PQ // AC và PQ = AC

Suy ra MN // PQ và MN = PQ.

Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau => MNPQ là hình bình hành

b) Theo a), ta có: MQ = 1/2 AD (1)

Xét tam giác ABC có: MA = MB ; NA = NC

=>MN là đường trung bình của tam giác ABC

=> MN = 1/2 BC (2)

Từ (1) và (2) và AD=BC (ABCD là thang cân)

=> MQ = MN

Hình bình hành MNPQ có MQ = MN 

=> MNPQ là hình thoi

Nguyễn Thị Hà Linh
1 tháng 9 2019 lúc 19:56

mk thấy bài làm của bn hơi vô lí 

Đào Bình Minh
Xem chi tiết
Bảo Ngọc Hà
Xem chi tiết
dam quang tuan anh
8 tháng 11 2017 lúc 21:51

http://lazi.vn/edu/exercise/cho-tu-giac-abcd-goi-m-n-p-q-lan-luot-la-trung-diem-cua-cac-canh-ab-cd-ad-bc-chung-minh-vecto-mp-qn-mq-pn . Bạn vào link này nhé

dân Chi
Xem chi tiết