Bài 1: Tìm số tự nhiên n để 3n+29 chia hết cho n+3
Tìm số tự nhiên n để 3n+29 chia hết cho n+3
\(\dfrac{3n+29}{n+3}=\dfrac{3\left(n+3\right)+20}{n+3}=3+\dfrac{20}{n+3}\)
Để \(3n+29⋮n+3\Rightarrow20⋮n+3\)
Hay n+3 là ước của 20 do n là số tự nhiên \(\Rightarrow\left(n+3\right)\ge3\)
\(\Rightarrow\left(n+3\right)=\left\{4;5;10;20\right\}\Rightarrow n=\left\{1;2;7;17\right\}\)
\(3n+29⋮n+3\)
\(\Rightarrow3n+29-3\left(n+3\right)⋮n+3\)
\(\Rightarrow3n+29-3n-9⋮n+3\)
\(\Rightarrow20⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-2;2;-4;4;-5;5;-20;20\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-5;-1;-7;1;-8;2;-23;17\right\}\left(n\in Z\right)\)
Bài 1:Tìm số dư khi chia mỗi số sau cho 9,cho 3:
8260, 1725 ,7364, 1015
Bài 2: Tìm chữ số tự nhiên n để 3n+29 chia hết cho n+3
Bài 2:
\(3n+29⋮n+3\)
\(\Leftrightarrow3n+9+20⋮n+3\)
\(\Leftrightarrow3\left(n+3\right)+20⋮n+3\)
Vì \(3\left(n+3\right)⋮n+3\)nên \(20⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
\(\Leftrightarrow n\in\left\{-2;-4;-1;-5;1;-7;2;-8;7;-13;17;-23\right\}\)
ta thấy 8+2+6+0=16;1+7+2+5=15;7+3+6+4=20;1+0+0+0+..+0=1
=>8260/3 dư 1 ; 1725/3 dư 0 ; 7364/3 dư 2 ;10^15/3 dư 1
2.3n+29 chia hết cho n+3
n+3 chia hết cho n+3 =>3n+9 chia hết cho n+3
=>3x+29-3x-9=20 chia hết cho n+3
=>n+3 thuộc ước của 20
có bảng( tự làm)VD
n+3 | 2 |
n | -1 |
Tìm chữ số tự nhiên n để 3n+29 chia hết cho n+3
Tìm chữ số tự nhiên n để 3n+29 chia hết cho n+3
3n + 29 chia hết cho n + 3
3n + 9 + 20 chia hết cho n + 3
3.(n + 3) + 20 chia hết cho n + 3
=> 20 chia hết cho n + 3
=> n + 3 thuộc Ư(20) = {1 ; 2 ; 4 ; 5 ; 10 ; 20}
Ta có bảng sau :
n + 3 | 1 | 2 | 4 | 5 | 6 | 20 |
n | -2 | -1 | 1 | 2 | 3 | 17 |
Tìm các số tự nhiên n để 3n + 29 chia hết cho n + 3
Vì 4n+3 chia hết cho 2n-1
=> (4n+3) - 2(2n-1) chia hết cho 2n-1
=> 4n + 3 - 4n +2 chia hết cho 2n-1
=> 5 chia hết 2n-1
=> 2n-1 thuộc {-1;1;5}
=> 2n thuộc {0;2;6}
=> n thuộc {0;1;3}
ta có: 3n + 29 chia hết cho n + 3
=> 3n + 9 + 20 chia hết cho n + 3
3.(n+3) + 20 chia hết cho n + 3
mà 3.(n+3) chia hết cho n + 3
=> 20 chia hết cho n + 3
=>...
1)Tìm số tự nhiên n để 3n+4 chia hết cho n-1
2)Tìm số tự nhiên n để 6n-3 chia hết cho 3n+1
Các bạn nhanh giúp mình với
1 trong 2 bài cũng được
trả lời...................................
đúng nhé..............................
hk tốt.........................................
1)Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4
= 3 ( n - 1 ) + 7
Vì ( n - 1 ) chia hết cho ( n -1 ) =>3 ( n - 1 ) chia hết cho ( n -1 )
Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 ) thì 7 chia hết cho n - 1
Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 }
Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK )
Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK )
Vậy n = 8 hoặc n = 2 là giá trị cần tìm
1)
3n+4 chia hết cho n - 1
ĐK : \(n\ge1\)
Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4
= 3 ( n - 1 ) + 7
Vì ( n - 1 ) chia hết cho ( n -1 )
Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 )
thì 7 chia hết cho n - 1
Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 }
Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK )
Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK )
Vậy n = 8 hoặc n = 2 là giá trị cần tìm
Tìm số tự nhiên n để 3n + 29 chia hết n+3
Ta có: 3n+29=3n+9+20=3n+3x3+20=3x(n+3)+20
Để 3n+29 chia hết cho n+3 thì 20 phải chia hết cho n+3
=>n+3 thuộc Ư(20)=1,2,4,5,4,10,20
=>n+3=1(ko thỏa mãn)
n+3=2(ko thỏa mãn)
n+3=4=>n=1
n+3=5=>n=2
n+3=10=>n=7
n+3=20=>n=17
=>n={1,2,7,17}
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
Tìm số tự nhiên n để
a, 3n+29 chia hết cho n+3
b,2n-1 là ước của 35
a) Ta có ; n + 3 chia hết cho n + 3 => 3(n + 3) chia hết cho n + 3
=> 3n + 9 chia hết cho n + 3
Để 3n + 29 chia hết cho n + 3 thì 3n + 29 - ( 3n + 9 ) phải chia hết cho n + 3
=> 3n + 29 - 3n - 9 chia hết cho n + 3
=> 20 chia hết cho n + 3
Để 3n + 29 chia hết cho n + 3 thì n + 3 là ước của 20
n + 3 = 20 => n = 20 - 3 = 17
n + 3 = 10 => n = 10 -3 = 7
n + 3 = 5 => n = 5 - 3 = 2
n + 3 = 4 +> n = 3 - 1 = 2
n + 3 = 2 => n = -1 [ loại vì n là số tự nhiên ]
n + 3 = 1 => n = - 2 { loại }
Câu b dễ mà ...
a,3n+29 chia hết cho n+3
3n+9+20 chia hết cho n+3
20 chia hết cho n+3
n+3 thuộc Ư(20)
Ư(20)={1;2;5;10:20}
Suy ra n thuộc 2;7;17.
b,2n-1 thuộc Ư(35)
Ư(35)={1;5;7;35}
Suy ra n thuộc 0;2;3;17.
a) \(3n+29\)\(⋮\)\(n+3\)
\(\Leftrightarrow3\left(n+3\right)+29-9⋮n+3\)
\(\Leftrightarrow3\left(n+3\right)+20⋮n+3\)
Vì \(n+3⋮n+3\)nên \(3\left(n+3\right)⋮n+3\)
Để \(3\left(n+3\right)+20⋮n+3\)thì \(20⋮n+3\)
\(\Rightarrow n+3\in Uoc\left(20\right)\)
Mà Ước của 20 là\(\left\{1;2;4;5;10;20\right\}\)
Câu b làm tương tự
\(\Rightarrow n+3=\left\{1;2;4;5;10;20\right\}\)
\(\Rightarrow n=\left\{-2;-1;1;2;7;17\right\}\)
Vì \(n\in N\)nên \(n=\left\{1;2;7;17\right\}\)
Vậy \(n=\left\{1;2;7;17\right\}\)