1. Cho tam giác ABC vuông tại A có góc B= 60 độ, AB= 4cm
a. Giải tam giác vuông
b. kẻ đường cao AH. Gọi M,N là hình chiếu của H lên AB, AC. Tính: - AH
- chứng minh AM.AB=AN.AC
Cho tam giác abc vuông tại A có Ah là đường cao. Biết AB = 6cm, BC = 10cm:
a) Giải tam giác ABC
b) Gọi D là hình chiếu của H lên AC. Tính AH, AD
c) Kẻ AE vuông góc BD tại E. Chứng minh AB = AC.tanBEH
Bài 1: Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Kẻ đường cao AH
a) Giải tam giác vuông ABC (góc làm tròn đến phút).
b) Gọi G, K là hình chiếu của H lần lượt lên AB và AC. Chứng minh rằng: AG.AB=AK.AC
Bài 2: Cho vuông tại A, đường cao AH có , đường cao AH có HB=9cm,HC=16cm
a) Tính AB, AC và AH.
b) Hạ HD vuông góc AB,HE vuông góc AC . Tính chu vi và diện tích tứ giác ADHE.
Bài 1:
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
=>\(\widehat{B}=90^0-37^0=53^0\)
b: Xét ΔHAB vuông tại H có HG là đường cao
nên \(AG\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AG\cdot AB=AK\cdot AC\)
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Biết AB = 2cm, AC =2/3 m. Tính độ dài BC, AH và số đo góc B. b) Gọi E là trung điểm AC của tam giác ABC và K là hình chiếu vuông góc của A lên BE. Chứng minh BK BE = BH BC và tam giác KEC đồng dạng với tam giác CEB c) Giả thiết rằng tia CK đồng thời là phân giác của góc C của tam giác ABC. Chứng minh 2.cos B = taB
. Cho ABC vuông tại A; đường cao AH. Biết AC = 4cm, BC = 5cm.
a/ Giải tam giác vuông ABC. ( số đo góc làm tròn đến độ)
b/ Tính AH
c/ Gọi I ,K lần lượt là hình chiếu của H trên AB và AC. Chứng minh: AI.AB = AK.AC
c: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
Bài 1: Cho tam giác ABC có AB= 28cm, AC= 35cm, góc A= 60 độ. Tính BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng:
a) AM.AB=AN.AC
b) AM.AB+AN.AC= 2 MN2
c) AM.BM+AN.CN= AH2
d) BM/CN = AB3/AC3
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Biết AB=4cm, AC=6cm.
a) Chứng minh : AD.AB=AE.AC
b) Tính độ dài AE
c) Kẻ phân giác AI của góc BAC. Tính độ dài HI
d) Đường thẳng vuông góc với DE tại D cắt BC tại M. Chứng minh M là trung điểm của BH
Bài 2 : Cho tam giác ABC vuông ở A. Gỉa sử D là 1 điểm trên cạnh huyền BC và E.F lần lượt là hình chiếu của D lên các cạnh AB, AC. CMR : AE.EB + AF.FC=BD.DC
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
Cho tam giác ABC vuông tại A có đường cao AH . Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh tứ giác AMHN là hình chữ nhật. b) Tính MN biết AH =4cm
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Ta có: AMHN là hình chữ nhật
nên MN=AH
hay MN=4(cm)
Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc
Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH.
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN
mình chịu thoiii
khôn vừa th , 1 câu hỏi đáp cho đc bao nhiêu điểm mà đòi phải làm tận 10 bài ,khôn như m thì dell ai muốn làm
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC)
a) biết HB = 4cm , HC = 9cm. tính AH và số đo góc ABC
b) gọi D là hình chiếu của H trên AB; E là hình chiếu của H trên AC. chứng minh CE.BD.AC.AB = AH4
c) kẻ AI vuông góc với ED (I thuộc BC). chứng minh I là trung điểm BC
giải chi tiết giúp mình ạ! mình cảm ơn nhiều<3
a/
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)
\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)
b/
Xét tg vuông AHB có
\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông AHC có
\(HC^2=CE.AC\) (lý do như trên)
\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)
Mà \(HB.HC=AH^2\) (cmt)
\(\Rightarrow CE.BD.AC.AB=AH^4\)
c/
\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE
\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD
=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN
Xét tg vuông ADH và tg vuông ADE có
HD = AE (cạnh đối HCN)
AD chung
=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)
\(\Rightarrow\widehat{AED}=\widehat{AHD}\)
\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) )
\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)
\(\widehat{C}+\widehat{B}=90^o\) (2)
\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\) (3)
Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC
Ta có
\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)
\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)
\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB
Mà IA= IC (cmt)
=> IB=IC => I là trung điểm của BC
Cho tam giác ABC vuông tại A có AB= 30cm, AC= 40cm.
a) Giải tam giác ABC.
b) Kẻ đường cao AH. Tính AH, BH.
c) Gọi I, K lần lượt là hình chiếu của H lên AB và AC. Chứng minh:
1/ IK2 = 1/ AB2 + 1/ AC2 . (dấu " / " nghĩa là phần, thay cho phân số) ; (số 2 kế bên chữ là mủ 2 [bình phương])