Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Trường Anh
Xem chi tiết
Thu Huong Doan
Xem chi tiết
Ngọc Hưng
26 tháng 9 2019 lúc 19:58

a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)

\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)

\(\Leftrightarrow9S-S=3^{2022}-1\)

\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)

b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)

\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)

\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)

=> đpcm

Nguyễn Huyền Trâm
26 tháng 9 2019 lúc 20:19

Tham khảo :

a, S=30+32+34+36+...+32020

⇔32S=32+34+36+38+...+32022

⇔32S−S=32022−30

⇔9S−S=32022−1

⇔8S=32022−1⇔S=32022−18

b,S=30+32+34+36+...+32020

=(30+32+34)+(36+38+310)+...+(32016+32018+32020)

=(1+32+34)+36(1+32+34)+...+32016(1+32+34)

=(1+32+34)(1+36+...+32016)

=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (

=> (đpcm)

=>99

Mai Thị Thanh Huyền
Xem chi tiết
Florentyna Phương
21 tháng 2 2015 lúc 10:16

a)nhân S với 32 ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=32004-1

=>S=32004-1/8

b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7

ta có:32004-1=(36)334-1=(36-1).M=7.104.M

=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7

 

Lionel Messi
29 tháng 4 2016 lúc 17:04

S chia het cho 7

Bùi Đức Anh
29 tháng 4 2016 lúc 17:05

S chia het ch 7

Nguyễn Lê Bảo An
Xem chi tiết
Giang Lê
Xem chi tiết
nguyễn văn nghĩa
Xem chi tiết
Nguyễn Huy Tú
20 tháng 8 2021 lúc 21:59

\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)

\(=1+3^2+3^4+3^6+...+3^{2014}\)

\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)

\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
Thiên Di Mai
Xem chi tiết
Sonic nguyễn
30 tháng 6 2015 lúc 11:04

b) S=(30+32+34)+...+(31998+32000+32002)

S= 91+...+31998(1+32+34)

S=91+...+31998.91

S=91(1+36+...+31998)

S=13.7.(1+36+...+31998) chia hết cho 7

Lê Mạnh Châu
4 tháng 4 2017 lúc 20:57

Mình chịu

Bó tay 

SORRY

~~~ Hello ~~~

Hitacha Aiko
3 tháng 12 2017 lúc 19:43

bó tay .com

Hạ Trần Lê Nhật
Xem chi tiết
Trần Quỳnh Mai
15 tháng 12 2016 lúc 10:47

 

a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)

b, Xét dãy số mũ : 0;2;4;6;...;2002

Số số hạng của dãy số trên là :

( 2002 - 0 ) : 2 + 1 = 1002 ( số )

Ta ghép được số nhóm là :

1002 : 3 = 334 ( nhóm )

Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)

Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)

Trịnh Thị Minh Ngọc
Xem chi tiết
Yến Như
17 tháng 1 2016 lúc 11:37

\(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(\Rightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2002}+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2002}+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...3^{2000}+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-3^0=3^{2004}-1\)

\(\Rightarrow S=\frac{3^{2004}-1}{8}\)