Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Karroy Yi
Xem chi tiết
Linh Chi
23 tháng 8 2015 lúc 8:35

a/c=b/d=3a/3c=4b/4d=5a/5c=6b/6d=3a+4b/3c+4d=5a-6b/5c-6d

3a+4b/3c+4d=5a-6b/5c-6d =>

3a+4b/5a-6b=3c+4d/5c-6d

 

 

 

 

Karroy Yi
Xem chi tiết
Huy Hổ
Xem chi tiết
Karroy Yi
Xem chi tiết
Trần Thị Diễm Quỳnh
23 tháng 8 2015 lúc 8:40

từ tỉ lệ thức đã cho

=>(3a+4b)(5c-6d)=(3c+4d)(5a-6b)

=>15ac-18ad+20bc-24bd=15ac+20ad-18bc-24bd

=>-18ad+20bc=20ad-18bc

=>-18ad-20ad=-18bc-20bc

=>-38ad=-38bc

=>ad=bc

=>a/b=c/d

=>

Trần Ngọc Khoa
Xem chi tiết
Thắng  Hoàng
25 tháng 12 2017 lúc 16:16

trang mấy

Lê Vũ Anh Thư
Xem chi tiết
kuroba kaito
31 tháng 3 2018 lúc 17:17

\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)

=> \(\dfrac{3a+4b}{3c+4d}=\dfrac{5a-6b}{5c-6d}\)

ta có

\(\dfrac{3a+4b}{3c+4d}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)(đpcm)

Nhã Doanh
31 tháng 3 2018 lúc 17:30

Ta có:

\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)

\(\Leftrightarrow\left(3a+4b\right)\left(5c-6d\right)=\left(3c+4d\right)\left(5a-6b\right)\)

\(\Rightarrow15ac-18ad+20bc-24bd=15ac-18bc+20ad-24bd\)

\(\Rightarrow15ac-15ac-18ad-20ad=-24bd+24bd-18bc-20bc\)

\(\Rightarrow-38ad=-38bc\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Hoàng Nhật
Xem chi tiết
huỳnh ngọc anh
Xem chi tiết

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=>a=bk; c=dk

a: \(\frac{2a+5b}{3a-4b}=\frac{2\cdot bk+5b}{3\cdot bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

\(\frac{2c+5d}{3c-4d}=\frac{2\cdot dk+5d}{3\cdot dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)

Do đó: \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

b: \(\frac{3a+7b}{5a-7b}=\frac{3\cdot bk+7b}{5\cdot bk-7b}=\frac{b\left(3k+7\right)}{b\left(5k-7\right)}=\frac{3k+7}{5k-7}\)

\(\frac{3c+7d}{5c-7d}=\frac{3\cdot dk+7d}{5\cdot dk-7d}=\frac{d\left(3k+7\right)}{d\left(5k-7\right)}=\frac{3k+7}{5k-7}\)

Do đó: \(\frac{3a+7b}{5a-7b}=\frac{3c+7d}{5c-7d}\)

d: \(\frac{4a+9b}{4a-7b}=\frac{4\cdot bk+9b}{4\cdot bk-7b}=\frac{b\left(4k+9\right)}{b\left(4k-7\right)}=\frac{4k+9}{4k-7}\)

\(\frac{4c+9d}{4c-7d}=\frac{4\cdot dk+9d}{4\cdot dk-7d}=\frac{d\left(4k+9\right)}{d\left(4k-7\right)}=\frac{4k+9}{4k-7}\)

Do đó: \(\frac{4a+9b}{4a-7b}=\frac{4c+9d}{4c-7d}\)

Hoàng Fake
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:25

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{3a+4b}{5a-3b}=\dfrac{3\cdot bk+4b}{5\cdot bk-3b}=\dfrac{b\left(3k+4\right)}{b\left(5k-3\right)}=\dfrac{3k+4}{5k-3}\)

\(\dfrac{3c+4d}{5c-3d}=\dfrac{3\cdot dk+4d}{5\cdot dk-3d}=\dfrac{d\left(3k+4\right)}{d\left(5k-3\right)}=\dfrac{3k+4}{5k-3}\)

Do đó: \(\dfrac{3a+4b}{5a-3b}=\dfrac{3c+4d}{5c-3d}\)