Cho \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\).Cm a=b=c
cho a,b,c >0 CM \(\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>=abc\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
\(A=\frac{a^2+bc}{b+ac}+\frac{b^2+ca}{c+ab}+\frac{c^2+ab}{a+bc}\)
\(=\frac{3\left(a^2+bc\right)}{\left(a+b+c\right)b+3ac}+\frac{3\left(b^2+ca\right)}{\left(a+b+c\right)c+3ab}+\frac{3\left(c^2+ab\right)}{\left(a+b+c\right)a+3bc}\)
\(\ge\frac{3\left(a^2+bc\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(b^2+ca\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}+\frac{3\left(c^2+ab\right)}{\left(a^2+bc\right)+\left(b^2+ca\right)+\left(c^2+ab\right)}=3\)
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
CM: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Giải:
Ta có: \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=VP\) (Đpcm)
Ta có:
\(VP=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc+a^2c+b^2c+c^3-abc-bc^2-ac^2\)
\(=a^3+b^3+c^3-3abc=VT\)
\(\rightarrow\) đpcm
Chúc bạn học tốt!!!
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Ta có VP: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+ba^2+b^3+bc^2-ab^2-b^2c-bac+ca^2+cb^2+c^3-cab-bc^2-ac^2\)
\(=a^3+b^3+c^3-3abc\)
Vậy \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
SOS là ra, khá đơn giản. Ta có:
$$\text{VP}-\text{VT}=ab \left( -c+a \right) ^{2}+ca \left( b-c \right) ^{2}+cb \left( a-b
\right) ^{2}\geqq 0.$$
Đẳng thức xảy ra khi $a=b=c.$
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
a,b,c>0
\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
Cho a,b,c>0 thỏa mãn \(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge\left(abc\right)^2\)
Chứng minh rằng \(\frac{\left(ab\right)^2}{\left(a^2+b^2\right)c^3}+\frac{\left(bc\right)^2}{\left(b^2+c^2\right)a^3}+\frac{\left(ac\right)^2}{\left(a^2+c^2\right)b^3}\ge\frac{\sqrt{3}}{2}\)
Chứng minh rằng nếu m=a+b+c thì
\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)
\(=\left[a.\left(a+b+c\right)+bc\right]\left[b.\left(a+b+c\right)+ac\right]\left[c.\left(a+b+c\right)+ab\right]\)
\(=\left(a^2+ab+ac+bc\right)\left(ba+b^2+bc+ac\right)\left(ca+cb+c^2+ab\right)\)
\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\left[\left(ca+c^2\right)\left(cb+ab\right)\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(b+a\right)\right]\left[c\left(a+c\right)b\left(b+b\right)\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
\(\Rightarrowđpcm\)
\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)
\(=\left[a\left(a+b+c\right)+bc\right]\left[b\left(a+b+c\right)+ac\right]\left[c\left(a+b+c\right)+ab\right]\)
\(=\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)\left(ac+bc+c^2+ab\right)\)
\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ab+b^2\right)+\left(bc+ac\right)\right]\left[\left(ac+c^2\right)+\left(bc+ab\right)\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(a+c\right)+b\left(a+c\right)\right]\)
\(=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
\(\Rightarrowđpcm\)