Cho ΔABC, góc B=60độ,góc C=80 độ.Tính số đo hóc tạo bởi trung tuyến AM và đường cao AH
cho tam giác ABC, góc B = 70, goc C= 50.Gọi AH lần lượt là đường cao và đường trung tuyến ker từ A. tìm số đo góc tạo bởi đường cao và đương trung tuyến
Cho tam giác nhọn ABC, góc B góc C, đường cao AH và đường trung tuyến AM. a CMR HC HB 2HMb Gọi a là góc tạo bởi đường cao và đường trung tuyến. CMR tanα cotC−cotB2
* Cho ΔABC vuông tại A có B= \(30^0\), AB=6cm
a. Giải ΔABC
b. Vẽ đường cao AH và trung tuyến AM của ΔABC. Tính diện tích ΔAHM
* Cho ΔABC vuông tại A có AB=3 cm, BC=5cm, đường cao AH
a. Tính số đo góc B, C
b. Gọi AE là phân giác của góc A (E ∈ BC). Tính AE
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
cho tam giác ABC không cân, góc A = 90 độ.
CMR : Góc tạo bởi trung tuyến AM và đường cao AH = góc B- góc C
\(\Delta ABC\) vuông tại A và AM là đường trung tuyến \(\Rightarrow AM=BM=CM\)
\(\Rightarrow\Delta AMB\) cân tại M \(\Rightarrow\widehat{MAB}=\widehat{B}\)
\(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{C}+\widehat{B}=90^0\left(1\right)\)
\(AH⊥BC\Rightarrow\widehat{B}+\widehat{BAH}=90^0\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{BAH}\). Ta có \(\widehat{BAH}+\widehat{HAM}=\widehat{MAB}\Rightarrow\widehat{HAM}=\widehat{MAB}-\widehat{BAH}\)\(\left(3\right)\)
Thay \(\widehat{B}=\widehat{MAB}\) và \(\widehat{C}=\widehat{BAH}\) vào (3), ta được:
\(\widehat{HAM}=\widehat{B}-\widehat{C}\). Vậy góc tạo bởi trung tuyến AM và đường cao AH \(\left(\widehat{HAM}\right)\) bằng \(\widehat{B}-\widehat{C}\)(đpcm)
Cho △ ABC có góc B bằng 73°, góc C bằng 48°. Tính tan của góc tạo bởi đường cao AH và trung tuyến AM.
Cho tam giác nhọn ABC, góc B> góc C, đường cao AH và đường trung tuyến AM.
a) CMR: HC-HB=2HM
b) Gọi a là góc tạo bởi đường cao và đường trung tuyến. CMR: \(\tan\alpha=\frac{\cot C-\cot B}{2}\)
a) Do AM là trung tuyến nên BM = MC
Ta có : \(HC-HB-2HM\)
\(=HM+MC-HB-HM-HM\)
\(=MC-HB-HM\)
\(=MC-\left(HB+HM\right)\)
\(=MC-MB=0\)
\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)
b) Xét \(\Delta AHM\)có \(\tan a=\frac{HM}{AH}\)
Xét \(\Delta AHC\)có \(\cot C=\frac{HC}{AH}\)
Xét \(\Delta AHB\)có \(\cot B=\frac{HB}{AH}\)
Ta có : \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)
Mà \(HC-HB=2HM\)( câu a )
\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)
Vậy ...
(2,5 điểm) Cho triangle ABC vuông tại A, đường cao AH, đường trung tuyến. AM 1 ) Biết BC = 10 cm, BH = 3.6cm Tỉnh độ dài đoạn thẳng AB, AH và số đo góc HAM ( làm ròn số đo góc đến phút) b) từ B kẻ BE vuông góc AM (E thuộc AM ) BE cắt cắt AH tại D. Chứng minh rằng DM II AC HD = DM * sin C Lấy điểm K trên cạnh BE sao cho hat AKM = 90 deg Chứng minh AE. ME = BE .DE VÀ S² AMK =S² AMB. S AMD
1: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
=>AB=căn 3,6*10=6(cm)
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>HB^2=6^2-3,6^2=4,8^2
=>HB=4,8(cm)
b: Xét ΔMAB có
BE,AH là đường cao
BE cắt AH tại D
=>D là trực tâm
=>MD vuông góc AB
=>MD//AC
=>góc HMD=góc HCA
ΔHDM vuông tại H
=>HD=DM*sinDMH
=DM*sinC
* Cho ΔABC có BC=12cm, góc B=\(60^0\), góc C=\(40^0\)
a. Tính đường cao CH và cạnh AC
b. Tính diện tích ΔABC (làm tròn đến chữ số thập phân thứ 2)
* Cho ΔABC vuông tại A có góc B= \(30^0\), AB=6cm
a. Giải tam giác vuông ABC
b. Vẽ đường cao AH, trung tuyến AM của ΔABC. Tính diện tích ΔAHM
1.
\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)
Tim Gia Tri Nho Nhat Cua
a) A = x - 4 can x + 9
b) B = x - 3 can x - 10
c ) C = x - can x + 1
d ) D = x + can x + 2
Bài 2:
a: Xét ΔABC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=6:\sin60^0=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A, AB<AH, đường cao AH. Goại D và E theo thứ tự là chân các đường vuông gocjsker từ H đến AB,AC.
a) Tứ giác ADHE là hình j ? vìsao?
b) Kẻ trung tuyến AM. CHứng minh góc HAB= góc MAC
c) Chứng minh: AM vuông hóc vs DE