Cho một hình chữ nhật ABCD. Số vectơ khác 0 → mà điểm đầu và điểm cuối trùng với các đỉnh của hình chữ nhật là:
A. 4
B. 6
C. 12
D. 16
Cho một hình chữ nhật ABCD. Số vectơ khác 0 → mà điểm đầu và điểm cuối trùng với các đỉnh của hình chữ nhật là:
A. 4
B. 6
C. 12
D. 16
Từ mỗi đỉnh dựng được 3 vectơ khác 0 → nhận đỉnh đó làm điểm đầu, điểm cuối là các đỉnh còn lại. Suy ra từ 4 đỉnh có 12 vectơ.
Đáp án C
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo và AB = a, BC = 3a.
a) Tính độ dài các vectơ \(\overrightarrow {AC} ,\overrightarrow {BD} \)
b) Tìm trong hình ảnh vectơ đối nhau và có độ dài bằng \(\frac{{a\sqrt {10} }}{2}\)
a) Ta có:
\(AC = BD = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {{\left( {3a} \right)}^2}} = a\sqrt {10} \)
+) \(\left| {\overrightarrow {AC} } \right| = AC = a\sqrt {10} \)
+) \(\left| {\overrightarrow {BD} } \right| = BD = a\sqrt {10} \)
b) O là giao điểm của hai đường chéo nên ta có:
\(AO = OC = BO = OD = \frac{{a\sqrt {10} }}{2}\)
Dựa vào hình vẽ ta thấy AO và CO cùng nằm trên một đường thẳng; BO và DO cùng nằm trên một đường thẳng
Suy ra các cặp vectơ đối nhau và có độ dài bằng \(\frac{{a\sqrt {10} }}{2}\) là:
\(\overrightarrow {OA} \) và \(\overrightarrow {OC} \); \(\overrightarrow {AO} \) và \(\overrightarrow {CO} \); \(\overrightarrow {OB} \) và \(\overrightarrow {OD} \); \(\overrightarrow {BO} \) và \(\overrightarrow {DO} \)
Cho một hình chữ nhật ABCD. Số nhóm các vectơ có độ dài bằng nhau là:
A. 2
B. 3
C. 4
D. 6
Trong hình chữ nhật, các cạnh đối diện bằng nhau và hai đường chéo bằng nhau nên ta có ba nhóm vectơ có độ dài bằng nhau, đó là:
Đáp án B
Cho hình vuông ABCD tâm O. Liệt kê tất cả các vectơ bằng nhau (khác \(\overrightarrow{0}\)) nhận đỉnh và tâm của hình vuông làm điểm đầu và điểm cuối ?
\(\overrightarrow{AO}=\overrightarrow{OC};\overrightarrow{DO}=\overrightarrow{OB}\);
\(\overrightarrow{OA}=\overrightarrow{CO};\overrightarrow{DO}=\overrightarrow{OB}\).
Cho một hình chữ nhật ABCD. Trong số các vectơ khác 0 → , có bao nhiêu cặp vectơ bằng nhau là:
A. 2
B. 4
C. 6
D. 8
Cho tứ giác ABCD, số các vectơ khác \(\overrightarrow{0}\) có điểm đầu và điểm cuối là đỉnh của tứ giác bằng bao nhiêu ?
Số các véc tơ tạo thành từ 4 điểm A, B, C, D đúng bằng số đoạn thẳng tạo thàng từ 4 điểm đó nhân với 2.
Số đoạn thẳng là: \(4.3:2=6\) (đoạn).
Số véc tơ là: 6.2 = 12 (véc tơ).
Tổng quát:
Số véc tơ tạo thành từ n điểm là: \(n\left(n-1\right)\) (véc tơ).
trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có đỉnh A(-1,2) và tâm I(1/2:0) xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD, biết đường thẳng BC đi qua điểm m(4;-3)
I là trung điểm AC \(\Rightarrow C\left(2;-2\right)\)
\(\Rightarrow\overrightarrow{CM}=\left(2;-1\right)\Rightarrow\) đường thẳng BC có dạng:
\(1\left(x-2\right)+2\left(y+2\right)=0\Leftrightarrow x+2y+2=0\)
Đường thẳng AB qua A và vuông góc BC nên nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)
B là giao điểm AB và BC nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}x+2y+2=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(...\right)\)
I là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}x_D=2x_I-x_B=...\\y_D=2y_I-y_B=...\end{matrix}\right.\)
Cho lục giác đều ABCDEF có tâm O. Số các vectơ khác \(\overrightarrow{0}\) cùng phương với \(\overrightarrow{OC}\) có điểm đầu và điểm cuối là đỉnh của lục giác bằng bao nhiêu ?
Số các véc tơ khác \(\overrightarrow{0}\) bằng véc tơ \(\overrightarrow{OC}\) có điểm đầu và điểm cuối là đỉnh lục giác là:
\(\overrightarrow{AB};\overrightarrow{BA};\overrightarrow{FO};\overrightarrow{OF};\overrightarrow{ED};\overrightarrow{DE};\overrightarrow{FC};\overrightarrow{CF}\).
Có 8 véc tơ.
Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD , đường thẳng BC có phương trình x+y-4=0, điểm M(-1,-1) là trung điểm của đoạn AD . Xác định tọa độ các đỉnh hình chữ nhật ABCD , biết đường thẳng AB đi qua điểm e(-1,1)
AB đi qua E và vuông góc BC nên nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow x-y+2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;-1\right)\)
Đường thẳng d qua M và song song AB có pt:
\(1\left(x+1\right)-1\left(y+1\right)=0\Leftrightarrow x-y=0\)
Gọi N là giao điểm d và BC \(\Rightarrow N\) là trung điểm BC
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x-y=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;2\right)\Rightarrow C\left(7;5\right)\)
Đường thẳng AD qua M và song song BC có pt:
\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)
A là giao điểm AB và AD nên tọa độ là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-2;0\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ D
cho hình thoi ABCD tìm các cặp véc tơ bằng nhau có điểm đầu và cuối lấy từ các đỉnh hình thoi