CMR: \(n^4-1\)chia hết cho 8 với n là số tự nhiên lẻ
GIÚP MK VS Ạ
CMR: \(n^4-1\)chia hết cho 8 với n là số tự nhiên lẻ
GIÚP MK VS Ạ
\(n^4-1\)
\(=\left(n^2\right)^2-1^2\)
\(=\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì n lẻ \(\Rightarrow\hept{\begin{cases}n-1\text{chẵn}\\n+1\text{chẵn}\\n^2+1\text{chẵn}\Rightarrow n^2+1⋮2\left(1\right)\end{cases}}\)
mặt khác n - 1 và n + 1 là 2 số chẵn liên tiếp \(\Rightarrow\left(n-1\right)\left(n+1\right)⋮4\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮8\left(đpcm\right)\)
Phân tích thành nhân tử:
\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì n là số tự nhiên lẻ nên n = 2k + 1 với k là số tự nhiên
Khi đó:
\(n^4-1=\left(2k-1+1\right)\left(2k+1+1\right)\left(n^2+1\right)\)
\(=2k\left(2k+2\right)\left(n^2+1\right)\)
\(=2k.2.\left(k+1\right)\left(n^2+1\right)\)
\(=4k\left(k+1\right)\left(n^2+1\right)\)
Vì k(k+1) là tích hay số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 \(\Rightarrow4k\left(k+1\right)⋮8\)
\(\Rightarrow4k\left(k+1\right)\left(n^2+1\right)⋮8\)
hay \(n^4-1⋮8\)(với n là số tự nhiên lẻ)
Ta có điều phải chứng minh.
CMR:
((2n+5)^2 - 25) chia hết cho 8 với mọi n thuộc N
(n^4 - 1) chia hết cho 8 với mọi n thuộc N, n lẻ
ai giúp e vs ạ
cmr: Với n là số tự nhiên lẻ thì A=n3+3n2-n-3 chia hết cho 8.
A = n^2 ( n+ 3 ) - ( n+ 3 )
= ( n^2 - 1 )(n+ 3 )
= ( n+ 1 )(n- 1 )(n + 3)
Vì n lẻ => n = 2k+ 1 thay vào ta có :
A = ( 2k + 1 + 1 )(2k+1 - 1 )(2k + 1 + 3) = (2k+2).2k (2k+4) = 2(k+1).2k . 2(k+2) = 8k(k+1)(k+2)
Luôn luôn chia hết cho 8 mới mọi n lẻ
=> A chia hết cho 8
CMR: Với n là số tự nhiên lẻ
Thì: n8 - n6 - n4 + n2 chia hết cho 1152.
Đặt đa thức là M
\(\Rightarrow M=n^2\left(n^6-n^4-n^2+1\right)\)
\(\Rightarrow M=n^2\left[n^4\left(n^2-1\right)-\left(n^2-1\right)\right]\)
\(\Rightarrow M=n^2\left(n^2-1\right)\left(n^4-1\right)\)
\(\Rightarrow M=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
Ta có
n(n - 1)(n+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3
\(\Rightarrow\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) chia hết cho 9
=> M chia hết cho 9
Mặt khác
Vì n là số lẻ nên n - 1 và n+1 là số chẵn
=> (n - 1)(n+1) chia hết cho 8
\(n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n+1\right)\left(n-1\right)\) chia hết cho 128
=> M chia hết cho 128
Mà (9;128)=1
=> M chia hết cho 9x128=1152 ( đpcm )
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
bài 1 :
cho a= n^2+n+1
a, cmr a là số tự nhiên lẻ với mọi số tự nhiên n
b, cmr a ko chia hết cho 5 với mọi số tự nhiên n
a)Nếu n là số lẻ thì n^2 là số lẻ,n^2+n là số lẻ,n^2+n+1 là số chẵn
Nếu n là số chẵn thì n^2 là số chẵn,n^2+n là số chẵn,n^2+n+1 là số lẻ(đề ghi sai)
a, Nếu n là số lẻ thì \(n^2\) lẻ suy ra \(n^2+n\) chẵn (lẻ cộng lẻ ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
Nếu n là số chẵn thì \(n^2\) chẵn suy ra \(n^2+n\) chẵn (chẵn cộng chẵn vẫn ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
câu b thì mk không chắc chắn với cách của mk lắm nhưng bạn cứ tham khảo thử nha!
Xét 2 trường hợp
Xét \(n⋮5\)(n chia hết cho 5) suy ra \(n^2\)chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5
Xét n không chia hết cho 5 suy ra \(n^2\)không chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5
Vậy a không chia hết cho 5 với mọi số tự nhiên n
Bài 8: Chứng minh
a, 2^9 - 1 chia hết cho 73
b, 5^6 - 10^4 chia hết cho 9
c, ( n+3)^2 - ( n-1)^2 chia hết cho 8 với mọi số tự nhiên n
d, ( n+6)^2 - ( n-6)^2 chia hết cho 24 với mọi số tự nhiên n
Giúp mk vs ạ mk đang cần
Bài 8:
a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)
\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)
b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)
\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)
c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)
d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12\cdot2n=24n⋮24\)(đpcm)
giúp mình giải bài này với ạ .
CMR : (10^n) -1 chia hết cho 99 với n là số tự nhiên chẵn
Lời giải:
Đặt $n=2k$ với $k$ là số tự nhiên. Khi đó:
$10^n-1=10^{2k}-1=1\underbrace{000...0}_{2k}-1$
$=\underbrace{999...9}_{2k}$
$=99\times 10^{2k-2}+99\times 10^{2k-4}+....+99.10^2+99$
$=99\times (10^{2k-2}+10^{2k-4}+...+10^2+1)\vdots 99$
Ta có đpcm.