Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Jisoo
Xem chi tiết
Rinu
18 tháng 8 2019 lúc 12:00

x4+2012x2+2011x+2012

=(x4-x)+(2012x2+2012x+2012)

=x(x3-1)+2012(x2+x+1)

=x(x-1) (x2+x+1) + 2012 (x2+x+1)

=(x2+x+1) [x(x-1)+2012]

=(x2+x+1) (x2-x+2012)

Trí Tiên亗
1 tháng 9 2020 lúc 12:50

\(x^4+2012x^2+2011x+2012\)

\(=x^4-x+2012x^2+2012x+2012\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2012.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

Khách vãng lai đã xóa
Tran Thi Xuan
Xem chi tiết
Đinh Đức Hùng
20 tháng 8 2017 lúc 12:56

1) \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left[\left(x^2+2x\right)+\left(x+2\right)\right]\)

\(=x\left(x+3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

2) \(x^4+2012x^2+2011x+2012\)

\(=\left(x^4-x\right)+\left(2012x^2+2012x+2012\right)\)

\(=x\left(x^3-1\right)+2012\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2012\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

Nguyễn Thị Bich Phương
Xem chi tiết
Nguyễn Văn Hải
4 tháng 12 2014 lúc 17:15

= x3 + y3 + z3 + 3x2yz + 3xy2z + 3xyz2 - x3 -y3 - z3

=3x2yz + 3xy2z + 3xyz2

= 3xyz( x + y + z)

Lê Thị Thảo
4 tháng 12 2014 lúc 20:05

b.

x^4+2012x^2+2012x-x+2012=

(x^4-x)+2012(x^2+x+1)=

x(x-1)(x^2+x+1)+2012(x^2+x+1)=

(x+2012)(x^2+x+1)

 

Vũ Văn Hùng
25 tháng 1 2017 lúc 11:22

làm sao ra vậy

Võ Thị Lan Anh
Xem chi tiết
Hoàn Biền Văn Vũ
Xem chi tiết
Trí Tiên亗
1 tháng 9 2020 lúc 12:53

a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)^3+z^3+3.\left(x+y\right).z.\left(x+y+z\right)\right]-x^3-y^3-z^3\)

\(=\left[x^3+y^3+3xy.\left(x+y\right)+z^3+3\left(x+y\right).z.\left(x+y+z\right)\right]-x^3-y^3-z^3\)

\(=3xy\left(x+y\right)+3\left(x+y\right)z.\left(x+y+z\right)\)

\(=3.\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

b) \(x^4+2012x^2+2011x+2012\)

\(=x^4-x+2012x^2+2012x+2012\)

\(=x.\left(x^3-1\right)+2012.\left(x^2+x+1\right)\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2012.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

Khách vãng lai đã xóa
Hoàn Biền Văn Vũ
Xem chi tiết
Đinh Đức Hùng
9 tháng 9 2017 lúc 11:48

\(a\text{)}\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+x\left(x+y+z\right)+x^2\right]-\left(y^3+z^3\right)\)

\(=\left(y+z\right)\left(3x^2+y^2+z^2+3xy+3xz+2yz\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)

\(=\left(y+z\right)\left(3x^2+y^2+z^2+3xy+3xz+2yz-y^2+yz-z^2\right)\)

\(=\left(y+z\right)\left(3x^2+3xy+3yz+3xz\right)\)

\(=3\left(y+z\right)\left(x^2+xy+yz+xz\right)\)

\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)

\(b\text{)}x^4+2012x^2+2011x+2012\)

\(=\left(x^4-x\right)+\left(2012x^2+2012x+2012\right)\)

\(=x\left(x^3-1\right)+2012\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)

\(=\left(x^2-x\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)

\(=\left(x^2-x+2012\right)\left(x^2+x+1\right)\)

Xem chi tiết
Trương Hữu Thái
24 tháng 5 2020 lúc 19:36

ủ4irir4101orerfd

Khách vãng lai đã xóa
Omega Neo
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 11 2019 lúc 0:20

Áp dụng định lý Bezout, số dư của phép chia f(x) cho g(x) là \(f\left(1\right)\)

\(f\left(1\right)=1+2-3-4+...-2011-2012\)

\(=-2-2-2-....-2\) (\(\frac{2012}{2}=1006\) số -2)

\(=-2012\)

Vậy số dư là \(-2012\)

Khách vãng lai đã xóa
Nguyễn Minh Thủy
Xem chi tiết