tìm x
(x-1).(x+3)<0
(2-1).(x+5) >0
(x-5).(x+1/2)>0
(x+1).(x-3/2)<0
Tìm x ϵ z biết
1, 0<x<3
2,0<x≤3
3, -1<x≤4
4, -2≤x≤2
5, -5<x≤0
6, -3<x≤0
7, 0<x-1≤1
8, -1≤x-1<0
9,1≤x-1≤2
10, 1≤x-1<2
11, -3<x<3
12, -3≤x≤3
13, -3<x-1<3
14, -3≤x-1≤3
15, -2<x+1<2
16, -4<x+3<4
17, 0≤x-5≤2
18, x là số không âm và nhỏ hơn 5
19,(x-3) là số không âm và nhỏ hơn 4
20, (x+2) là số dương và không lớn hơn 5
cÁC BẠN ƠI GIÚP MÌNH VS Ạ,MÌNH ĐANG CẦN GẤP!!!!!!
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
Tìm x biết:
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
c) (x - 1)3 - x2.(x - 2) + 5 = 0.
d) x2 - 4x + 5 = 0.
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
<=> 4x^2 - 4x + 1 - 3x^2 + 12 - 25 = 0
<=> x2 - 4x - 12 = 0
<=> (x+2)(x-6) = 0
<=> x = -2 hoặc x = 6
d) x2 - 4x + 5 = 0.
<=> (x - 2)2 = -1 (vô lý)
Vậy phương trình vô nghiệm
Tìm x
a, ( 3 . x -1 ) . ( -1/2 .x + 5 ) = 0
b, 3. ( x - 1/2 ) - 5 ( x + 3 /5 ) = x + 1 /5
c, -5 . ( x + 1/5 ) - 1/2 . ( x - 2/3 ) = 3/2 . x - 5/6
d,3. ( 3 . x - 1/2 ) mũ 3 + 1/9 = 0
a) \(\left(3x-1\right).\left(\frac{-1}{2}x+5\right)=0\)
\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
\(\frac{-1}{2}x+5=0\Rightarrow\frac{-1}{2}x=-5\Rightarrow x=10\)
b) \(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)
\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)
\(\Rightarrow3x-5x-x=\frac{1}{5}+\frac{3}{2}+3\)
\(-3x=\frac{47}{10}\)
\(x=\frac{-47}{30}\)
c) \(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}+1-\frac{1}{3}\)
\(-7x=\frac{-1}{6}\)
\(x=\frac{1}{42}\)
d) \(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(3x=\frac{1}{6}\)
\(x=\frac{1}{18}\)
Học tốt nhé bn!
x = \(\frac{1}{18}\)nha
Tìm x
1. x(x+7)=0
2. (x+12)(x-3)=0
3. (-x+5)(3-x)=0
4. x(2+x)(7-x)=0
5. (x-1)(x+2)(-x-3)=0
Làm theo công thức: tích bằng 0 thì một trong x thừa số bằng 0 rồi xét các trường hợp
1. x ( x + 7 ) = 0
( 1 ) x = 0
( 2 ) x + 7 = 0 => x = -7
S = { -7 ; 0 }
2. ( x + 12 ) ( x - 3 ) = 0
( 1 ) x + 12 = 0 => x = -12
( 2 ) x - 3 = 0 => x = 3
S = { -12 ; 3 }
3. ( -x + 5 ) ( 3 - x ) = 0
( 1 ) -x + 5 = 0 => -x = -5 => x = 5
( 2 ) 3 - x = 0 => x = 3
S = { 3 ; 5 }
4. x ( 2 + x ) ( 7 - x ) = 0
( 1 ) x = 0
( 2 ) 2 + x = 0 => x = -2
( 3 ) 7 - x = 0 => x = 7
S = { -2 ; 0 ; 7 }
5. ( x - 1 ) ( x + 2 ) ( -x - 3 ) = 0
( 1 ) x - 1 = 0 => x = 1
( 2 ) x + 2 = 0 => x = -2
( 3 ) -x - 3 = 0 => -x = 3 => x = -3
S = { -3 ; -2 ; 1 }
tìm x
1/ x.(x+7)=0
2/ (x+12).(x-3)=0
3/ (-x+5).(3-x)=0
4/ x.(2+x).(7-x)=0
5/ (x-1).(x+2).(-x-3)=0
\(1,x.\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4/ \(x.\left(2+x\right).\left(7-x\right)=0\)
\(\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}}\) => \(\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}\)
Vậy \(x=\left\{0,-2,7\right\}\)
5/ \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)
Tìm x nguyên biết :
a) (x^2 -5)×(x^2 +1)=0
b)(x+3)×(x^2+1)=0
c)(x+5)×(x^2+1)<0
d)(x+5)×(x^2-4)=0
e)(x-2)×(-x^2-4)>0
g)(x^2+2)×(x+3)>0
h)(x+4)×|x+5|>0
i)(x+3)×(x-5)>0
\(\left(x^2-5\right)\left(x^2+1\right)=0\)
<=> \(\hept{\begin{cases}x^2-5=0\\x^2+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x^2=5\\x^2=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{5};x=-\sqrt{5}\\x\in\varnothing\end{cases}}\)
câu còn lại tương tự nha
Tìm x
1) (2x-1)(x+3)(2-x)=0
2)x^3 + x^2 + x + 1 = 0
3) 2x(x-3)+5(x-3) =0
4)x(2x-7)-(4x-14)=0
5) 2x^3 + 3x^2 + 2x + 3 = 0
1) (2x-1)(x+3)(2-x)=0
=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0
=>x=1/2 hoặc x=-3 hoặc x=2
2)x^3 + x^2 + x + 1 = 0
=>.x^2(x+1)+(x+1)=0
=>(x^2+1)(x+1)=0
=>x^2+1=0 hoặc x+1=0
=> x =-1
3) 2x(x-3)+5(x-3) =0
=>(2x+5)(x-3)=0
=>2x+5=0 hoặc x-3=0
=>x=-5/2 hoặc x=3
4)x(2x-7)-(4x-14)=0
=> (x-2)(2x-7)=0
=> x-2 =0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
5)2x^3+3x^2+2x+3=0
=>x^2(2x+3)+2x+3=0
=>(x^2+1)(2x+3)=0
=>x^2+1=0 hoặc 2x+3=0
=> x =-3/2
Tìm x
(3^2-2^3)x+3^2.2^2=4^2.3
x^5-x^3=0
(x-1)^2+(-3)^2=5^2.(-1)^100
(2x-1)^2-(2x-1)=0
1.
$(3^2-2^3)x+3^2.2^2=4^2.3$
$\Leftrightarrow x+36=48$
$\Leftrightarrow x=48-36=12$
2.
$x^5-x^3=0$
$\Leftrightarrow x^3(x^2-1)=0$
$\Leftrightarrow x^3(x-1)(x+1)=0$
$\Leftrightarrow x^3=0$ hoặc $x-1=0$ hoặc $x+1=0$
$\Leftrightarrow x=0$ hoặc $x=\pm 1$
3.
$(x-1)^2+(-3)^2=5^2(-1)^{100}$
$\Leftrightarrow (x-1)^2+9=25$
$\Leftrightarrow (x-1)^2=25-9=16=4^2=(-4)^2$
$\Rightarrow x-1=4$ hoặc $x-1=-4$
$\Leftrightarrow x=5$ hoặc $x=-3$
4.
$(2x-1)^2-(2x-1)=0$
$\Leftrightarrow (2x-1)(2x-1-1)=0$
$\Leftrightarrow (2x-1)(2x-2)=0$
$\Leftrightarrow 2x-1=0$ hoặc $2x-2=0$
$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$
$\Lef
`@` `\text {Ans}`
`\downarrow`
\((3^2-2^3)x+3^2.2^2=4^2.3\)
`=> x + (3*2)^2 = 48`
`=> x+6^2 = 48`
`=> x + 36 = 48`
`=> x = 48 - 36`
`=> x=12`
Vậy, `x=12`
\(x^5-x^3=0\)
`=> x^3(x^2 - 1)=0`
`=>`\(\left[{}\begin{matrix}x^3=0\\x^2-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
Vậy, `x \in {0; +- 1 }`
\(\left(x-1\right)^2+\left(-3\right)^2=5^2\cdot\left(-1\right)^{100}\)
`=> (x-1)^2 + 9 = 25*1`
`=> (x-1)^2 + 9 = 25`
`=> (x-1)^2 = 25 - 9`
`=> (x-1)^2 = 16`
`=> (x-1)^2 = (+-4)^2`
`=>`\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4+1\\x=-4+1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy, `x \in {5; -3}`
\((2x-1)^2-(2x-1)=0\)
`=> (2x-1)(2x-1) - (2x-1)=0`
`=> (2x-1)(2x-1-1)=0`
`=>`\(\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
Tìm x
1/(x+12).(3-x)=0
2/(-x+5).(3-x)=0
3/x.(2+x).(7-x)=0
4/(x-1.(x+2).(-x-3)=0
1/ ( x+12)(3-x)=0
=> \(\orbr{\begin{cases}x+12=0\\3-x=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=-12\\x=3\end{cases}}\)
xin lỗi nhé, nãy ấn nhầm:
\(\left(x+12\right)\left(3-x\right)=0\)
<=> \(\orbr{\begin{cases}x+12=0\\3-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-12\\x=3\end{cases}}\)
Vậy...