Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 9:53

Đặt \(A=2005^n+60^n-1897^n-168^n\)

\(2004=4.3.167\)

2005 chia 4 dư 1 nên \(2005^n\equiv1\left(mod4\right)\)

\(1897\) chia 4 dư 1 nên \(1897^n\equiv1\left(mod4\right)\)

Tương tự: \(60^n\equiv0\left(mod4\right)\) ; \(168^n\equiv0\left(mod4\right)\)

\(\Rightarrow2005^n+60^n-1897^n-168^n\equiv1+0-1-0\equiv0\left(mod4\right)\)

\(\Rightarrow A⋮4\)

Cũng làm như vậy, ta có:

\(2005^n+60^n-1897^n-168^n\equiv1+0-1-0\equiv0\left(mod3\right)\)

\(\Rightarrow A⋮3\)

\(2005^n+60^n-1897^n-168^n\equiv1+60^n-60^n-1\equiv0\left(mod167\right)\)

\(\Rightarrow A⋮167\)

Mà 4, 3, 167 nguyên tố cùng nhau

\(\Rightarrow A⋮\left(4.3.167\right)\) hay \(A⋮2004\)

Nguyễn Thị Khánh Huyền
Xem chi tiết
Đinh Tuấn Việt
21 tháng 5 2015 lúc 20:00

Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.

Với n = 1 thì n2005 + 2005 + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.

Với n > 1 thì đều ra trường hợp không chia hết cho 3.

             Vậy n = 1

robert lewandoski
21 tháng 5 2015 lúc 20:09

ta xét;

(*)n=0=>n^2005+2005^n+2005n =0^2005+2005^0+2005x0=1+1+0=2 (không chia hết cho 3)

(*)n=1 =>n^2005+2005^n+2005n=1^2005+2005^1+2005x1=1+2005x2=4011(không chia hết cho 3)

(*)n>1 thi2 n^2005+2005^n+2005n sẽ không chia hết cho 3 Hay n=1

Nguyễn Phương Thảo
Xem chi tiết
Lê Chí Cường
21 tháng 7 2015 lúc 14:44

Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.

Với n = 1 thì n2005 + 2005 + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.

Với n > 1 thì đều ra trường hợp không chia hết cho 3.

             Vậy n = 1

fifaworldcup
21 tháng 7 2015 lúc 16:32

vi 2005 chia cho 3 du 1 nen 2005n=3k+1

ta chia 3TH:

TH1:n=3k

=>2005n+n2005+2005n=(3k+1+3k+3k) chia cho 3 du 1(loại)

TH2:n=3k+1

=>2005n+n2005+2005n=3k+1+3k+1+3k+1=3(3k+1)chia het cho 3

TH3:n=3k+2

=>2005n+n2005+2005n=3k+1+3k+2+3k+2=3.3k+5chia cho 3 du 1(loai)

vậy n có dang 3k+1 thi 2005n+n2005+2005n chia het cho 3

Nguyễn Thanh Hằng
Xem chi tiết
Võ Đông Anh Tuấn
14 tháng 7 2016 lúc 8:57

a chia cho 153 dư 110 => a - 110 chia hết cho 153

a chia cho 117 dư 110 => a - 110 chia hết cho 117

=> a - 110 \(∈\) BC(153; 117)

153 = 32.17 ; 117 = 32.13 => BCNN (153;117) = 32.13.17 = 1989

=> a -110 \(∈\) B(1989) = {0;1989; 3978;5967;...} => a \(∈\) {110;2099;4088;  ...}

Mà 2000 < a < 5000 nên a = 2099 hoặc a = 4088

Vậy...

Chúc bạn học tốt :yoyo55:

ILoveMath
Xem chi tiết
ILoveMath
2 tháng 8 2021 lúc 22:22

Mà \(125⋮5\Rightarrow\left(2n-1\right)^3+75⋮5\) mà \(75⋮5\Rightarrow\left(2n-1\right)^3⋮5\)

Vì 5 nguyên tố \(\Rightarrow2n-1⋮5\Rightarrow\left(2n-1\right)^3⋮125\) nhưng 75 \(⋮̸\)125 (vô lí)

Vậy \(4n^3-6n^2+3n+37\)\(⋮̸\)125

ILoveMath
3 tháng 8 2021 lúc 8:25

.

Con Gái Họ Trần
Xem chi tiết
Minh thich thi minh lam
Xem chi tiết
Em là Sky yêu dấu
17 tháng 6 2017 lúc 8:17

CHỨNG MINH S CHIA HẾT CHO 10 :

\(S=4+4^2+...+4^{2004}\)

\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)

\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)

\(S=1.20+4^3.20+...+4^{2003}.20\)

\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )

\(=>dpcm\)

CHỨNG MINH 3S+4 CHIA HẾT CHO 42004

\(S=4+4^2+4^3+...+4^{2004}\)

\(4S=4+4^2+4^3+...+4^{2005}\)

\(3S=4S-S=4^{2005}-4\)

MÀ 42005 CHIA HẾT CHO 42004

\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)

Hoàng Sơn
17 tháng 6 2017 lúc 8:36

\(S=1+4^2+...+4^{2004}\)

\(4S=4+4^3+...+4^{2005}\)

\(\Rightarrow\)\(4S-S=4+4^3+...+4^{2005}-1-4^2-...-4^{2004}\)

\(\Rightarrow\)\(3S=\left(4^3-4^3\right)+...+\left(4^{2004}-4^{2004}\right)-\left(4^{2005}+4-1-4^2\right)\)

\(\Rightarrow\)

Ngô Việt Bắc
Xem chi tiết
Nam Lee
Xem chi tiết
Mysterious Person
29 tháng 8 2017 lúc 6:20

ta có : \(B=2004+2004^2+2004^3+...+2004^{10}\)

\(B=\left(2004+2004^2\right)+\left(2004^3+2004^4\right)+...+\left(2004^9+2004^{10}\right)\)

\(B=2004.\left(1+2004\right)+2004^3\left(1+2004\right)+...+2004^9\left(1+2004\right)\)

\(B=2004.2005+2004^3.2005+...+2004^9.2005\)

\(B=2005.\left(2004+2004^3+...+2004^9\right)⋮2005\)

\(\Rightarrow2005.\left(2004+2004^3+2004^9\right)\) chia hết cho \(2005\)

\(\Leftrightarrow B=2004+2004^2+2004^3+...+2004^{10}\) chia hết cho \(2005\) (đpcm)

Phong Khánh
7 tháng 8 2019 lúc 16:00

B=2004 + 20042 + 20043 + ... + 200410

B=(2004 + 20042) + (20043 + 20044) + ... + (20049 + 200410)

B=2004.(1 + 2004) + 20043(1 + 2004) + ... + 20049(1 + 2004)

B=2004.2005 + 20043.2005 + ... + 20049.2005

B=2005.(2004 + 20043 + ... + 20049) ⋮ 2005 (đpcm)