tim GTNN hoac GTLN
F=(x2- 2x)2-5
G= /2x -1/+/y-3/+5
I= /3+4x/-1
Tim GTNN cua bieu thuc : B=x^2+xy+y^2-2x-3y+2019
Tìm GTNN , GTLn của biểu thức : A=\(\frac{8x+3}{4x^2+1}\)
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
tim gtln hoac gtnn cua biet thuc
C= -x2-2x+5-y2+4y
Tìm GTLN nak !!!
\(C=-x^2-2x+5-y^2+4y\)
\(=\left(-x^2-2x-1\right)+\left(-y^2+4y-4\right)+10\)
\(=-\left(x+1\right)^2-\left(y-2\right)^2+10\le10\)có GTLN là 10
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Vậy \(C_{max}=10\) tại \(x=-1;y=2\)
Tim GTLN hoac( GTNN )cua bieu thuc ;
A=|2x-3/5|+1,(3)
B=1/3-|x-2| (B>0)00
C=-2|1/3x+4|+3/2
D=|x-3|+|x+2/3|
tìm gtnn,gtln
y=|x-2|+|1-x|
y=|2x-1|+|3-x|-2x
y=|2x+4|+|x+3|-x
y=\(\sqrt{4x^2-4x+1}\)-|x-1|
áp dụng tính chất |A|+|B|>+|A+B|
y=|x-2|+|1-x|\(\ge\)|x-2+1-x|=|-1|=1
vậy gtri nhỏ nhất y=1 khi (x-2)(1-x)\(\ge0\)
<=> \(-1\le2\)
các câu sau tương tự nha
tim GTNN hoac ,GTLN:
I=2x^2 - 2x -2xy
giải nhanh giúp mình nhé! please ^-^
giải mình cho 1 like.(mai nộp rùi do)
Tim GTNN hoac GTLN cua cac bieu thuc sau :
a) A = 3|2x - 1| - 5 b) B = 10 - 5 |x - 2| c) C =\(\frac{1}{\left|x-2\right|+3}\)
\(A=3\left|2x+5\right|+12.6\)Tim GTNN hoac GTLN
gtnn:
A = 3 | 2x+5| + 12.6
=> A = 3.|2x+5| + 72
De A nho nhat thi |2x+5| = 0
=> A = 3.0+72 = 72
Vay gtnn cua A la 72
gtln:
A = 3.|2x+5| + 12.6
=> A = 3.|2x+5|+ 72
De A lon nhat thi |2x+5| > 0
=> A = 3.z + 72 ( voi z la 1 so bat ki lon hon 0 )
=> A > 75
Vay: gtln cua A la lon hon 75
tìm GTNN
A=/3x+6/ +(2x-4y)^2+6
B=/2x-5/+/2x-7/
C=2 /2x+1/+/4x-3/
tìm GTLN
D= /x/ +3/ 3/x/+2
F= 5/x/+2/ 7/x/+1
rl8ph6gr59i5fe5ed7i90u68xw8pce5u
; ouunogrr
tim GTLN hoac GTNN cua bthuc
a) A=x2-6x+11
B=2x2+10x-1
c) 5x-x2
a, \(A=x^2-6x+11\)
\(=x^2-2.3.x+9+2\)
\(=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(MinA=3\Leftrightarrow x=3\)
b, \(B=2x^2+10x-1\)
\(=2\left(x^2+5x\right)-1\)
\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)
Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)
c, \(C=5x-x^2\)
\(=-x^2+5x\)
\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)
\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)
Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)