Tìm GTNN của biểu thức sau:
A= 4x^2 + y^2 + 4x + 2y + 7
B = 6x + 3x^2 + 4
giúp mk vs
Tìm GTNN của các biểu thức sau:
a,A=4x2-12x +2010
b,B=3x2+5x
c,C=x2 +y2 - 4x +9y+2017
d,D=2x2+y2-6x+ 2xy -2y +2000
Giups mk vs ạ.:<<
a) \(A=4x^2-12x+2010\)
\(=4x^2-12x+9+2001\)
\(=\left(2x-3\right)^2+2001\ge2001\)
Dấu "=" xảy ra khi: \(x=\frac{3}{2}\)
Vậy....
CMR với mọi giá trị của biến ta luôn có x^4+3x^2+3>0 (x^2+2x+3)(x^2+2x+4)+3>0 Tìm GTNN hay GTLN của các biểu thức sau A=x^2+8x ; B= -2x^2+8x-15 ; C=x^2-4x+7 ; D=(x^2-4x-5)(x^2-4x-19)+49 ; E=x^2-6x+y^2-2y+12
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
1. Tìm GTNN của biểu thức :
A = 4x2 - 4x + 5 ; B = 3x2 + 6x - 1
2. Tìm GTLN của biểu thức :
A = 10 + 6x - x2 ; B = 7 - 5x - 2x2
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTLN,GTNN(nếu có) của các biểu thức sau:
a)A=-4-x^3+6x.
b)B=3x^2-5x+7
c)C=|x-3|(2-|x-3|)
d)D=(x-1)(x+5)(x^2+4x+5)
e)E=-x^2-4x-y^2+2y
f)F=(x-1)(x-3)+11
g)G=(x-3)^2+(x-2)^2
H=2000/x^2+2x+6
i)I=15/6x-x^2-14
j)M=8x+3/4x^2+1
k)K=3x^2+2x+3/x^2+1
Giúp mik đi 😀
Tìm GTNN của các biểu thức sau
a , A= 4X^2 + 4x + 11
b, B = 3x^2 +5x - 7
c , C = x^2 - 2x + y^2 - 4y + 7
giúp mk nha m.n
A=4x2+4x+11=(4x2+4x+1)+10=(2x+1)2+10
vì (2x+1)2 \(\ge\)0
\(\Rightarrow\)A=(2x+1)2+10\(\ge\)10
dấu ''='' xảy ra \(\Leftrightarrow\)x=\(-\frac{1}{2}\)
Rút gọn và tính giá trị của biểu thức sau: E=(2x-y)(4x^2+2xy+y^2)-(3x+y)^3+(x-2y)^3 tại x=-1; y=2 (Giúp mk vs mk cần gấp)