(3x - 26)2018=1
Tìm x:
a,2.{x+5}-x^2-5=0
b,2x.{x-5}-x.{3+2x}=26
c,{x+7}2-x.{x-3}=12
d,9.{x-2018}-x+2018=0
e,4x.{x+1}+{3x-2}.{3x+2}=15
b,2x.(x-5)-x.(3+2x)=26
2x2 - 10x - 3x - 2x2 = 26
-13x = 26
x = -2
c, (x+7)2-x.(x-3)=12
x2 +14x +49 - x2 + 3x = 12
17x + 49 = 12
17x = - 37
x = \(\dfrac{-37}{17}\)
d, 9( x -2018) - x+ 2018 =0
9( x -2018) - (x -2018) = 0
( 9-1)(x -2018) = 0
8( x -2018) = 0
x -2018 = 0
x = 2018
a: =>2x+10-x^2-5=0
=>-x^2+2x+5=0
=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)
e: =>4x^2+4x+9x^2-4=15
=>13x^2+4x-19=0
=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)
cho \(x=\frac{26+15\sqrt{3}}{\sqrt{9+\sqrt{80}}+\sqrt{9-\sqrt{80}}}\)
tính \(\left(3x^3+x^2+1\right)^{2018}\)
1) Thực hiện phép tính nhanh (nếu có thể)
a)1/12+3/4-5/8
b)A= 26/3x2010/2018+26/3x1/2018-5/8
So sánh (26^2018+3^2018)^2019 và (26^2019+3^2019)2018
Giải nhanh mình tick cho nha
GPT: \(x^3+x^2+1=\left(x^3-3x+2\right).2018^{x^2+3x-1}+\left(x^2+3x-1\right).2018^{x^3-3x+2}\)
So sánh :\(\left(26^{2018}+3^{2018}\right)^{2019}\)và \(\left(26^{2019}+3^{2019}\right)^{2018}\)
So sánh : \(\left(26^{2018}+3^{2018}\right)^{2019}\) và \(\left(26^{2019}+3^{2019}\right)^{2018}\)
\(A=\left(26^{2018}+3^{2018}\right)^{2019}\)
\(B=\left(26^{2019}+3^{2019}\right)^{2018}\)
\(B=\left(26^{2018}.26+3.3^{2018}\right)^{2018}< \left(26^{2018}.26+3^{2018}.26\right)^{2018}\)
\(B< \left(26^{2018}+3^{2018}\right)^{2018}.26^{2018}< \left(26^{2018}+3^{2018}\right)^{2018}.\left(26^{2018}+3^{2018}\right)\)
\(\Rightarrow B< \left(26^{2018}+3^{2018}\right)^{2019}\Rightarrow B< A\)
\(\frac{2x-4y}{39}\)=\(\frac{4z-3x}{26}\)=\(\frac{3y-2z}{52}\)
tính giá trị biểu thức A=2018-2x-11y+10z
Ta có: \(\frac{2x-4y}{39}=\frac{4z-3x}{26}=\frac{3y-2z}{52}\)
\(\Rightarrow\frac{39\left(2x-4y\right)}{39.39}=\frac{26\left(4z-3x\right)}{26.26}=\frac{52\left(3y-2z\right)}{52.52}\)
\(\Rightarrow\frac{78x-156y}{1521}=\frac{104z-78x}{676}=\frac{156y-104z}{2704}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{78x-156y}{1521}=\frac{104z-78x}{676}=\frac{156y-104z}{2704}=\frac{78x-156y+104z-78x+156y-104z}{1521+676+2704}=\frac{0}{4901}=0\)
Do đó: \(\hept{\begin{cases}\frac{2x-4y}{39}=0\\\frac{4z-3x}{26}=0\\\frac{3y-2z}{52}=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-4y=0\\4z-3x=0\\3y-2z=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=4y\\4z=3x\\3y=2z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{2}\\\frac{z}{3}=\frac{x}{4}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=k\)\(\Rightarrow\hept{\begin{cases}x=4k\\y=2k\\z=3k\end{cases}}\)
Ta có: \(A=2018-2x-11y+10z=2018-2.4k-11.2k+10.3k=2018-8k-22k+30k\)
\(A=2018-\left(8k+22k-30k\right)=2018-0=2018\)
\(\frac{2x-4y}{39}=\frac{4z-3x}{26}=\frac{3y-2z}{52}\)
\(\frac{2x-4y}{13\cdot3}=\frac{4z-3x}{13\cdot2}=\frac{3y-2z}{13\cdot4}\)=>\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}\) =\(\frac{3\left(2x-4y\right)}{3^2}=\frac{2\left(4z-3x\right)}{2^2}=\frac{4\left(3y-2z\right)}{4^2}\)=\(\frac{6x-12y}{9}=\frac{8z-6x}{2}=\frac{12y-8z}{4}\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau có:}\)
\(\frac{6x-12y}{9}=\frac{8z-6x}{2}=\frac{12y-8z}{4}\)=\(\frac{6x-12y+8z-6x+12y-8z}{9+2+4}\)=\(\frac{0}{15}\)=\(0\)
\(\Rightarrow\hept{\begin{cases}\frac{6x-12y}{9}=0\\\frac{8z-6x}{4}=0\\\frac{12y-8z}{16}=0\end{cases}}\hept{\begin{cases}6x-12y=0\\8z-6x=0\\12y-8z=0\end{cases}}\Rightarrow\)\(\hept{\begin{cases}6x=12y\\8z=6x\\12y=8z\end{cases}}\hept{\begin{cases}\frac{x}{12}=\frac{y}{6}\\\frac{z}{6}=\frac{x}{8}\\\frac{y}{8}=\frac{z}{12}\end{cases}}\Rightarrow\)\(\hept{\begin{cases}\frac{x}{4}=\frac{y}{2}\\\frac{z}{3}=\frac{x}{4}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\)\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=k\)\(\Rightarrow\hept{\begin{cases}x=4k\\y=2k\\z=3k\end{cases}}\)
\(\Rightarrow A=\)\(2018-2\cdot4k-11\cdot2k+10\cdot3k\)\(=2018-8k-22k+30k=2018-0=2018\)
so sanh \(\left(26^{2018}+3^{2018}\right)^{2019}\)
và \(\left(26^{2019}+3^{2019}\right)^{2018}\)
Ta có: \(\left(26^{2018}+3^{2018}\right)^{2019}=26^{2018\cdot2019}+3^{2018\cdot2019}\left(1\right)\)
\(\left(26^{2019}+3^{2019}\right)^{2018}=26^{2019\cdot2018}+3^{2019\cdot2018}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(26^{2018}+3^{2018}\right)^{2019}=\left(26^{2019}+3^{2019}\right)^{2018}\)