Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
van hoan Dao
Xem chi tiết
Tu Nguyen
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 21:58

\(sin5x+sinx+sin3x=0\)

\(\Leftrightarrow2sin3x.cos2x+sin3x=0\)

\(\Leftrightarrow sin3x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=k\pi\\2x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{3}\\x=\pm\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 11 2017 lúc 8:45

sin3x + sin5x = 0

⇔ 2sin4x. cosx = 0

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy nghiệm của phương trình là:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nguyễn đinh cát tường
Xem chi tiết
Hoài Tạ Thị Thu
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2021 lúc 20:19

a.

\(sin5x+sin3x+sin8x=0\)

\(\Leftrightarrow2sin4x.cosx+2sin4x.cos4x=0\)

\(\Leftrightarrow2sin4x\left(cosx+cos4x\right)=0\)

\(\Leftrightarrow4sin4x.cos\dfrac{5x}{2}cos\dfrac{3x}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos\dfrac{5x}{2}=0\\cos\dfrac{3x}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=k\pi\\\dfrac{5x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{4}\\x=\dfrac{\pi}{5}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
23 tháng 11 2021 lúc 20:26

b.

\(\Leftrightarrow4cos^3x+6\sqrt{2}sinx.cosx=8cosx\)

\(\Leftrightarrow2cosx\left(2cos^2x+3\sqrt{2}sinx-4\right)=0\)

\(\Leftrightarrow cosx\left(-2sin^2x+3\sqrt{3}sinx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=\sqrt{2}\left(loại\right)\\sinx=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
21 tháng 8 2020 lúc 21:45

\(\Leftrightarrow sin4x\left(sin5x+sin3x\right)-sin2x.sinx=0\)

\(\Leftrightarrow2sin^24x.cosx-2sin^2x.cosx=0\)

\(\Leftrightarrow cosx\left(2sin^24x-2sin^2x\right)=0\)

\(\Leftrightarrow cosx\left(1-cos8x-1+cos2x\right)=0\)

\(\Leftrightarrow cosx\left(cos2x-cos8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=2x+k2\pi\\8x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{k\pi}{3}\\x=\frac{k\pi}{5}\end{matrix}\right.\)

Thầy Đức Anh
Xem chi tiết
Bùi Minh Hằng
20 tháng 12 2021 lúc 9:17
Khách vãng lai đã xóa
Bùi Minh Hằng
20 tháng 12 2021 lúc 9:21
Khách vãng lai đã xóa
Nguyễn Yến Nhi
20 tháng 12 2021 lúc 9:36

x=π/3+k2π

x=-π/3+k2π

Khách vãng lai đã xóa
Vy Bùi
Xem chi tiết
Quỳnh Cao Thúy
4 tháng 9 2018 lúc 16:27

sin3x + 1=2sin22x

<=> sin3x + 1 = 2\(\dfrac{1-cos4x}{2}\)

<=> sin3x + 1 = 1 - cos4x

<=> sin3x = -cos4x

<=> sin3x + cos4x = 0

<=> \(\dfrac{\sqrt{2}}{2}\)sin3x + \(\dfrac{\sqrt{2}}{2}\)cos4x = 0 (chia 2 vế cho \(\sqrt{2}\)).

<=> cos\(\dfrac{\pi}{4}\)sin3x + sin\(\dfrac{\pi}{4}\)cos4x = 0

<=> sin (3x+\(\dfrac{\pi}{4}\)) = 0

<=> sin(3x+\(\dfrac{\pi}{4}\)) = sin0

<=> \(\left[{}\begin{matrix}3x+\dfrac{\pi}{4}=0+k2\pi\\3x+\dfrac{\pi}{4}=\pi-0+k2\pi\end{matrix}\right.\)(k\(\in\)Z)

<=>\(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+\dfrac{k2\pi}{3}\\x=\dfrac{5\pi}{12}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(k\(\in\)Z)

Nhân Trần
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 11 2019 lúc 21:04

\(cosx+cos3x+cos2x+cos4x=0\)

\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)

\(\Leftrightarrow cosx.\left(cos2x+cos3x\right)=0\)

\(\Leftrightarrow cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{5x}{2}=0\\cos\frac{x}{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=\pi+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
22 tháng 11 2019 lúc 21:08

\(sinx+sin7x+sin3x+sin5x=0\)

\(\Leftrightarrow2sin4x.cos3x+2sin4x.cosx=0\)

\(\Leftrightarrow sin4x\left(cos3x+cosx\right)=0\)

\(\Leftrightarrow sin4x.cos2x.cosx=0\)

\(\Leftrightarrow sin4x=0\)

\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)

Lý do chỉ cần 1 pt sin4x=0 do sin4x bao hàm cả cosx và cos2x ở trong đó

Khách vãng lai đã xóa