a.
\(sin5x+sin3x+sin8x=0\)
\(\Leftrightarrow2sin4x.cosx+2sin4x.cos4x=0\)
\(\Leftrightarrow2sin4x\left(cosx+cos4x\right)=0\)
\(\Leftrightarrow4sin4x.cos\dfrac{5x}{2}cos\dfrac{3x}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos\dfrac{5x}{2}=0\\cos\dfrac{3x}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=k\pi\\\dfrac{5x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{4}\\x=\dfrac{\pi}{5}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
b.
\(\Leftrightarrow4cos^3x+6\sqrt{2}sinx.cosx=8cosx\)
\(\Leftrightarrow2cosx\left(2cos^2x+3\sqrt{2}sinx-4\right)=0\)
\(\Leftrightarrow cosx\left(-2sin^2x+3\sqrt{3}sinx-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=\sqrt{2}\left(loại\right)\\sinx=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)