a, 3n+9chia hết cho n-2
b, n2+5n+3chia hết cho n-1
c, n3+4n2+9n+40chia hết cho n+1
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Tìm n thuộc N
a, 3n+9 chia hết n-2
b, n2+5n+ 3 chia hết n-1
c, n3+ 4n2+9n+40chia hết cho n+1
a, 3n+9chia hết n-2
b, n2+5n+3 chia hết cho n-1
c,n3+4n2+9n+40 chia hết cho n+1
tìm số tự nhiên n để
a)n+5chia hết cho n-2
b)n+7chia hết cho 2-n
c)3n+2chia hết cho 2n-1
đ)5n+3chia hết cho 7-3n
a,n+13chia hết cho n
b,n+9chia hết cho n
c,n+6chia hết cho n+1
d,n+5chia hết cho n-3
e,3n+17chia hết cho n
g,4n+9 chia hết cho n+1
h,5n+6chia hết cho n+2
i,3n+5chia hết cho n-2
Mọi ng giúp mình nha
Tìm n thuộc N biết
a) n+3chia hết n-2
b)2n+9chia hết n-3
c)3n-1chia hết 3-2n
tìm số nguyên n để;
a)n+3chia hết n-2
b)2n+9chia hết-3
c)3n-1chia hết 3-2n
a) n+3=(n-2)+5
vì n-2 đã chia hết cho n-2 rồi => muốn biểu thức chia hết cho n-2 => n-2 thuộc Ư(5) => n-2 thuộc (+-1; +-5) <=> n thuộc (3;1;8;-3)
b) đề là n-3 đúng k?
mình làm luôn nha: \(2n+9=2n-6+15=2\left(n-3\right)+15\) vì....=> n-3 thuộc Ư(15) <=> ... ( như trên nha)
c) gọi \(M=\frac{3n-1}{3-2n}\Rightarrow2M=\frac{6n-2}{3-2n}=\frac{-\left(9-6n\right)+7}{3-2n}=\frac{-3\left(3-2n\right)+7}{3-2n}\) vì -3(3-2n) đã chia hết.... rồi => ... 3-2n phải thuộc Ư(7) <=>.... như trên
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
a) Ta có n3 - n + 4
= n(n2 - 1) + 4
= (n - 1)n(n + 1) + 4
Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp)
mà 4 \(⋮̸\)3
=> n3 - n + 4 không chia hết cho 3