chung minh rang:
\(S=\frac{1}{5^2}-\frac{1}{5^4}+\frac{1}{5^6}-...+\frac{1}{5^{4n-2}}-\frac{1}{5^{4n}}+...+\frac{1}{5^{2010}}-\frac{1}{5^{^{2012}}}
CMR:
S=\(\frac{1}{5^2}\)-\(\frac{1}{5^4}\)+\(\frac{1}{5^6}\)-.........+\(\frac{1}{5^{4n-2}}\)-\(\frac{1}{5^{4n}}\)+.......+\(\frac{1}{5^{2010}}\)-\(\frac{1}{5^{2012}}\)<\(\frac{1}{26}\)
25S = 1 - 1/52+1/54- 1/56+.......+1/52008- 1/52010
Cộng 2 vế với S ta có :
26S = 1 - 1/52012 < 1 suy ra S< 1/26
\(5^2.S=1-\frac{1}{5^2}+\frac{1}{5^4}-.....+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)
\(25S=1-\frac{1}{5^2}+\frac{1}{5^4}-...+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)Cộng 2 vế với S ta có
\(26S=1-\frac{1}{5^{2012}}\)\(\Rightarrow26S< 1\Rightarrow S< \frac{1}{26}\)
đăng cho vui, ko cần giải cx đc
a)Chứng minh rằng nếu:
\(\frac{x}{a+2b+c}\)=\(\frac{y}{2a+b-c}\)=\(\frac{z}{4a-4b+c}\) thì \(\frac{a}{x+2y+z}\)=\(\frac{b}{2x+y-z}\)=\(\frac{c}{4x-4y+z}\)
b) Chứng mình rằng: S= \(\frac{1}{5^2}\)-\(\frac{1}{5^4}\)+\(\frac{1}{5^6}\)-...+\(\frac{1}{5^{4n-2}}\)-\(\frac{1}{5^{4n}}\)+...+\(\frac{1}{5^{2010}}\)-\(\frac{1}{5^{2012}}\) < \(\frac{1}{26}\)
a) Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=k\)
\(\Rightarrow k=\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\frac{x+2y+z}{9a}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{k}{9}\)
Tương tự :\(\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}=\frac{k}{9}\)
Vậy ..........
Chứng minh rằng:
a,\(\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{\left(4n-1\right).\left(4n+3\right)}=\frac{5n}{3.\left(4n+3\right)}\)
b,\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}< \frac{1}{4}\)
Tìm số tự nhiên n sao cho \(\frac{1}{2}.\frac{5}{6}.\frac{9}{10}...\frac{4n+1}{4n+2}<\frac{1}{2014}<\frac{4}{5}.\frac{8}{9}.\frac{12}{13}...\frac{4n+4}{4n+4}\)
bài 1:Tính độ dìa các cạnh của một tam giác. Biết ba đường cao của tam giác lần lượt là 3cm, 4cm, 6cm và chu vi của tam giác 36 cm
bài2: a) Tìm các só nguyên tố p thỏa mãn: p+2, p+16, p+20 là các sô nguyên tô
b) Tìm số nguyên x,y thỏa mãn: 2x-2.3y-2x=4x-3
bài3: chứng minh rằng S= \(\frac{1}{5^2}-\frac{1}{5^4}+\frac{1}{5^5}-....+\frac{1}{5^{4n-2}}-\frac{1}{5^{4n}}+....+\frac{1}{5^{2012}}-\frac{1}{5^{2014}}<\frac{1}{26}\)
bài 4 cho S=1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}vàP=1+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\)
Chứng minh rằng (S-P)2014=1
bạn nào lm dc bài nào cũng dc giúp với cần gấp
\(\frac{\frac{4}{2010}+\frac{4}{2011}-\frac{4}{2012}}{\frac{5}{2010}+\frac{5}{2011}-\frac{5}{2012}}-\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{37}-\frac{1}{5}}{-\frac{5}{123}+\frac{5}{19}-\frac{5}{37}+1}\)= ?
1/ Chứng tỏ rằng \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}<1\)
2/ Chứng tỏ rằng \(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}<1\)
3/ Rút gọn biểu thức \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
4/ Tính nhanh\(\frac{\frac{4}{2010}+\frac{4}{2011}-\frac{4}{2012}}{\frac{5}{2010}+\frac{5}{2011}-\frac{5}{2012}}-\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{-\frac{5}{123}+\frac{5}{19}-\frac{5}{371}+1}\)
GIÚP ĐƯỢC CÂU NÀO THÌ GIÚP NHÉ, MÌNH TICK CHO
c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
1/
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1/1-1/100
Vì 1/100>0
-->1/1-1/100<1
-->A<1
a)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{1}-\frac{1}{100}\)=\(\frac{99}{100}<1\)
CMR:Với mọi số tự nhiên n \(\ne\)0 ta đều có:
a.\(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+...+\frac{1}{\left(3n-1\right)\times\left(3n+2\right)}=\frac{1}{6n+4}\)
b.\(\frac{5}{3\times7}+\frac{5}{7\times11}+\frac{5}{11\times15}+...+\frac{5}{\left(4n-1\right)\times\left(4n+3\right)}=\frac{5n}{4n+3}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
b)\(VT=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left[\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{4n+3}\right]=\frac{5}{4}\cdot\left[\frac{4n+3}{3\left(4n+3\right)}-\frac{3}{3\left(4n+3\right)}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{4n+3-3}{12n+9}\right]\)\(=\frac{5}{4}\cdot\frac{4n}{12n+9}=\frac{5n}{12n+9}\)
1.Tìm tất cả các số tự nhiên n thỏa mãn:
\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right)^{2n -1}+n.2^n=8192\)
2. So sánh A và B biết:
\(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{5.6}+...+\frac{2011}{1999.2000}\)
\(B=\frac{2012}{1001}+\frac{2012}{1002}+\frac{2012}{1003}+...+\frac{2012}{2000}\)
3. Tính \(\left(S-P\right)^{2016}\) biết:\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(P=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\)
4.Tìm x:
a) \(-1\frac{1}{56}:\left(\frac{1}{8}-\frac{1}{7}\right)-\frac{22}{\left|2.x-0,5\right|}=-1\frac{1}{30}:\left(\frac{1}{5}-\frac{1}{6}\right)\)
b) \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}....\frac{30}{62}.\frac{31}{64}=2^x\)
c) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)