tìm số nguyên n để \(y=\frac{3.\left|n\right|+1}{3.\left|n\right|-1}\) có giá trị nguyên
Cho biểu thức: \(A=\frac{5}{n-1};\left(n\varepsilon Z\right)\)
Tìm điều kiện của n để A là phân số? Tìm tất cả giá trị nguyên của n để A là số nguyên?
a) n khác 1
b) n-1(5) = -1;1;-5;5
n= 0; 2; -4;6
ai cung k hieu chỉ vai bạn gioi hieu moi thay
dc hay
Để A là phân số thì: n-1\(\ne\) 0 => n \(\ne\)1
vậy với n \(\ne\) 1 thì A là phân số
Để A là số nguyên thì: 5 chia hết cho n- 1
=>( n- 1) thuộc Ư(5)
=> Ư(5)= 1; -1; 5; -5
n | 1 | -1 | 5 | -5 |
n-1 | 0 | -2 | 4 | -6 |
Vậy n thuộc -2; 4; -6
cho biết : A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x+2}\)
a, tìm đkxđ của A và rút gọn A
b, tính giá trị của A khi x=3
c, tìm giá trị nguyên của x để A có giá trị nguyên
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)
2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)
3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)
4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)
7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên
8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)
a) Tìm số nguyên \(n\)để \(A\)là phân số
b) Tìm số nguyên \(n\)để \(A\)là số nguyên
9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên
10. Tìm tập hợp các số nguyên \(a\)là bội của 3:
\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)
Cho biểu thức N = \(\left(\dfrac{1}{y-1}-\dfrac{1}{1-y^3}.\dfrac{y^2+y+1}{y+1}\right):\dfrac{1}{y^2-1}\)
a, Rút gọn N
b, Tìm giá trị của N khi \(y=\dfrac{1}{2}\)
c, Tìm giá trị của y để N luôn có giá trị dương
a: \(N=\left(\dfrac{1}{y-1}+\dfrac{1}{\left(y-1\right)\left(y^2+y+1\right)}\cdot\dfrac{y^2+y+1}{y+1}\right)\cdot\left(y^2-1\right)\)
\(=\dfrac{y+1+1}{\left(y-1\right)\left(y+1\right)}\cdot\left(y^2-1\right)=y+2\)
b: Thay y=1/2 vào N, ta được:
N=1/2+2=5/2
c: Để N>0 thì y+2>0
hay y>-2
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}y>-2\\y\notin\left\{-1;1\right\}\end{matrix}\right.\)
Lời giải:
a. ĐKXĐ: $y\neq \pm 1$
\(N=\left(\frac{1}{y-1}-\frac{1}{(1-y)(1+y+y^2)}.\frac{y^2+y+1}{y+1}\right).(y^2-1)\)
\(=(\frac{1}{y-1}-\frac{1}{(1-y)(y+1)})(y-1)(y+1)\)
\(=\frac{1}{y-1}(y-1)(y+1)-\frac{1}{-(y-1)(y+1)}.(y-1)(y+1)=y+1-(-1)=y+2\)
b. Khi $y=\frac{1}{2}$ thì:
$N=\frac{1}{2}+2=\frac{5}{2}$
c. Để $N>0\Leftrightarrow y+2>0\Leftrightarrow y>-2$
Kết hợp đkxđ suy ra $y>-2$ và $y\neq \pm 1$ thì $N$ dương.
Cho A = 2n-1/n-3
a) Tìm số nguyên n để A có giá trị nguyên
b)Tìm số nguyên n để A có giá trị lớn nhất
( các ban trình bày rõ ra dùm mình nha )
mik sẽ tick cho các bạn
a. Ta có:A = 2n-1 / n-3 = 2n-6+6-1 / n-3 = 2(n-3)+5 / n-3 = 2(n-3)/n-3+ 5/ n-3= 2+ (5/ n-3)
Để A nguyên thì 2+5/n-3 nguyên => 5/n-3 nguyên hay 5 chia hết cho n-3
=>n-3 thuộc ước của 5
=> n-3 thuộc {5, -5,1,-1}
=> n thuộc { 8, -2, 4, 2}
b. Để A có GTLN thì 5/n-3 có GTLN=> n-3 là số nguyên dương nhỏ nhất=> n - 3 = 1 => n = 1+3 = 4
=> A = 2 + 5 = 7
vậy GTLN của A = 7 khi n = 4
a) Để A có giá trị là số nguyên
Thì (2n—1) chia hết cho (n—3)
==> [2(n—3)+4) chia hết cho (n—3)
Vì (n—3) chia hết cho (n—3)
Nên (2+4) chia hết cho (n—3)
==> 6 chia hết cho (n—3)
==> (n—3) € Ư(6)
(n—3) €{1;-1;2;-2;3;-3;6;-6}
TH1: n—3=1
n=1+3
n=4
TH2: n—3=-1
n=-1+3
n=2
TH3: n—3=2
n=2+3
n=5
TH4: n—3=-2
n=-2+3
n=1
TH5:n—3=3
n=3+3
n=6
TH6: n—3=—3
n=-3+3
n=0
TH7: n—3=6
n=6+3
n=9
TH8: n—3=-6
n=-6+3
n=-3
Mình chỉ biết 1 câu thôi nha bạn
Câu b nè
\(b,A=\frac{2n-1}{n-3}\)
\(\Rightarrow A=\frac{2n-6+5}{n-3}\)
\(\Rightarrow A=2+\frac{5}{n-3}\)
Để A đạt GTLN \(\Rightarrow\frac{5}{n-3}>0\)và \(\frac{5}{n-3}\)phải đạt GTLN
\(\Rightarrow n-3\inƯ\left(5\right)\)và \(n-3\)đạt GTNN
\(\Rightarrow n-3=1\Leftrightarrow n=4\)
Vậy \(MaxA=2+5=7\Leftrightarrow n=4\)
2]
cho phân số A= 6n+1/4n+3 [ với N nguyên ]
a] tìm giá trị n NA để A có giá trị là số nguyên
b] tìm giá trị n để A là phân số không rút gọn được
3]
a] so sánh 2 số sau : 4^127 và 81^43
b] tìm số nguyên x thoả mãn 3/1 + 3/3 +3/6 + 3/10 + ... + 3/x.[x + 1] :2 =2015/333
Cho biểu thức B= \(\dfrac{\left(x+4\right).x-2}{x+4}\)
(với x ≠ -4).
Tìm số nguyên x để B có giá trị là số nguyên
\(B=\dfrac{\left(x+4\right)\times x-2}{x+4}\)
\(B=x-\dfrac{2}{x+4}\)
Vì \(x\in z\), để \(B\in z\Leftrightarrow\dfrac{2}{x+4}\in z\)
\(\Leftrightarrow2⋮\left(x+4\right)\)
\(\Leftrightarrow x+4\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left(\pm1;\pm2\right)\)
Ta có bảng sau
\(\begin{matrix}x+4&1&-1&2&-2\\x&-3&-5&-2&-6\end{matrix}\)
Vậy \(x\in\left(-2;-3;-5;-6\right)\) thì \(B\in z\)
Tìm tất cả các giá trị nguyên của tham số m để phương trình:
\(mx^2-\left(1-2m\right)x+m-2=0^{\left(1\right)}\) có nghiệm là số hữu tỉ
(1-2m)2 - 4m(m-2) >0
1-4m +4m2-4m2 +8m >0
4m +1 >0
m > -1/4
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?
Tìm tất cả các giá trị nguyên của tham số m để phương trình:
\(mx^2-\left(1-2m\right)x+m-2=0^{\left(1\right)}\) có nghiệm là số hữu tỉ