Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tôi Là Ai
Xem chi tiết
alibaba nguyễn
24 tháng 11 2016 lúc 11:36

Ta có 

x + y + z - xy - yz - xz \(\le1\)

\(\Leftrightarrow\left(1-x\right)+\left(xy-y\right)+\left(yz-xyz\right)+\left(xz-z\right)+xyz\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(1-y-z+yz\right)+xyz\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(\left(1-y\right)+\left(-z+yz\right)\right)+xyz\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)+xyz\ge0\)

Đúng vì theo đề ta có: \(\hept{\begin{cases}1-x\ge0\\1-y\ge0\\1-z\ge0\end{cases}}\)và \(\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}\)

Vậy ta có ĐPCM

Dương Thị Hồng Nhung
Xem chi tiết
gta dat
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
23 tháng 10 2020 lúc 15:22

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)

Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)

Ta có : \(x+y\le1\)

=> \(\left(x+y\right)^2\le1\)

=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )

=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )

=> đpcm

Đẳng thức xảy ra <=> x = y = 1/2

Khách vãng lai đã xóa
Cherry Hien
Xem chi tiết
Đức Hiếu
18 tháng 6 2017 lúc 9:28

Ta có:

\(A+B+C=x^2y+xy^2+xy\)

\(=xy.\left(x+y+1\right)\)

mà theo bài ra \(x+y=-1\) nên

\(A+B+C=xy.\left(-1+1\right)=xy.0=0\)

Vậy \(A+B+C=0\) (đpcm)

Chúc bạn học tốt!!!

Nguyễn Huy Tú
18 tháng 6 2017 lúc 9:14

Ta có: \(A+B+C=x^2y+xy^2+xy\)

\(=xy\left(x+y+1\right)=xy\left(-1+1\right)=0\)

\(\Rightarrowđpcm\)

Tài Nguyễn
Xem chi tiết
Agdchcv
Xem chi tiết
Quang Lo
11 tháng 1 2017 lúc 15:42

TH1 xvà y la 0 và 2thì0.2=0<1

TH2 x và y là 1 thì 1.1=1<1

mà nếu x hay y am thi xy <1 (dpcm)

nguyen tan 12
Xem chi tiết
nguyen tan 12
25 tháng 4 2018 lúc 13:55

khong dung bdt cosi nhe

Không Tên
25 tháng 4 2018 lúc 20:02

bài này ko dùng cô-si nhé, đề chỉ cho x,y là số thực và thỏa mãn \(xy\ge1\) chứ ko nói j đến dương, tham khảo bài lm của mk nhé:

                                BÀI LÀM

       \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\)\(\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)

\(\Leftrightarrow\)\(\frac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\) \(\frac{x\left(y-x\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+xy\right)\left(1+y^2\right)}+\frac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x+xy^2-y-x^2y\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x-y\right)\left(1-xy\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

đến đây bn tự giải thích và làm tiếp nhé

CÁCH 2:    \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+y^2+x^2+x^2y^2}\)

Ta luôn có:   \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)\(\Leftrightarrow\)\(a^2+b^2\ge2ab\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

Áp dụng BĐT trên ta có:   \(x^2+y^2\ge2xy\) mà   \(xy\ge1\) nên  \(x^2+y^2\ge2\)

\(xy\ge1\)  \(\Rightarrow\)\(\left(xy\right)^2=x^2y^2\ge1\)

Khi đó:    \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{1+x^2+y^2}{1+x^2+y^2+x^2y^2}\ge\frac{2xy+1}{2xy+1+1}\ge\frac{2+2}{2xy+2}=\frac{4}{2\left(xy+1\right)}=\frac{2}{1+xy}\)

\(\Rightarrow\)\(VT\ge\frac{2}{1+xy}\)hay   \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) (đpcm)

tth_new
17 tháng 12 2019 lúc 9:01

Ta có: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\)\(=1-\frac{\left(xy-1\right)\left(xy+1\right)}{\left(xy+1\right)^2+\left(x-y\right)^2}\ge1-\frac{\left(xy-1\right)\left(xy+1\right)}{\left(xy+1\right)^2}=\frac{2}{1+xy}\)

Khách vãng lai đã xóa
Kiều Ngọc Diễm
Xem chi tiết
Hoàng Hiếu Võ
Xem chi tiết