Cho tam giác MNP (góc M=90°), đường cao MH, đường trung tuyến MQ, biết MN=6, MP=8. Tính MQ,HQ.
a: \(NP=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔMNP có MQ là phân giác
nên QN/MN=QP/MP
=>QN/3=QP/4=(QN+QP)/(3+4)=20/7
=>QN=60/7cm; QP=80/7cm
b: QE//MN
=>PQ/PN=EQ/MN
=>EQ/12=80/7:20=4/7
=>EQ=48/7cm
c: MH=12*16/20=9,6cm
\(MQ=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)
\(HQ=\sqrt{MQ^2-MH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho Tam Giác MNP vuông Tại M, đường cao MQ. Cho NQ = 2, NP = 8. Tính MN, MP
cho tam giác MNP vuông tại M.MQ là đường trung tuyến,biết cạnh MN=9cm,MP=12cm.tính cạnh MQ
Xét tam giác MNP vuông góc tại M:
- áp dụng định lí Pytago ta có
NP2=MN2+MP2
=> NP2=92+122
=> NP2=225
=> NP=15cm
xét tam giác MNP vuông góc tại M có MQ là đường trung tuyến
=>MQ=1/2NP=1/2.15=7,5(cm)
Xét tam giác MNP vuông tại M:
\(NP^2=MN^2+MP^2\left(pytago\right)\)
\(\Rightarrow NP^2=9^2+12^2=225\Rightarrow NP=15\left(cm\right)\)
Xét tam giác MNP vuông tại M có MQ là trung tuyến
\(\Rightarrow MQ=\dfrac{1}{2}NP=\dfrac{1}{2}.15=7,5\left(cm\right)\)
cho tam giác MNP có góc M=90 độ, đường cao MH. tính MP biết MN=6cm, NP=3NH
Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=MN^2\)
=>\(NH\cdot3NH=6^2=36\)
=>\(NH^2=12\)
=>\(NH=2\sqrt{3}\left(cm\right)\)
=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)
=>\(MP^2=108-36=72\)
=>\(MP=6\sqrt{2}\left(cm\right)\)
Cho tam giác MNP vuông tại M, trung tuyến MI. Trên tia MI lấy điểm Q sao cho MQ=2MI. Chứng minh NQ//MP. Chứng minh tam giác MNP=tam giác NMQ. Gọi G là trọng tâm của tam giác MNQ. Tính IG biết MN =9cm, NQ = 12cm. Trên tia MQ lấy điểm K sao cho MQ = 3MK. Gọi E là trung điểm của MP. Chứng minh N,K, thẳng hàng
cho tam giác mnp vuông tại n (mn<np) có đường cao nh. a) tính np, nh, mh, hp biết mn=15cm và mp=25cm. b) kẻ hq vuông góc với np tại q. Gọi K là trung điểm của mn, pk cắt hq tại i.Chứng minh: cot góc imp nhân cos góc ipm=4 toán 9
Cho tam giác KHQ vuông tại K , có đường cao KM. a. Biết KH=9cm , KQ=12cm . Tính MQ. b. Cho KM=24cm , HQ=50cm. Tính MH (MH> MQ)
tam giác MNP vuông tại M có MN < MP kẻ MQ vuông góc với NP (Q thuộc NP) trên cạnh NP lấy E sao cho ME=MQ. Qua E kẻ đường vuông góc với MP, cắt NP tại F. CMR: MG,KE,NP đồng quy( biết G là trung điểm của KP)
Cho tam giác MNP vuông tại M. MH là đường cao. Kẻ HK vuông góc với MN tại K. HQ vuông góc với MP tại Q. Chứng Minh
MH^2=NH x HP