phân tích đa thức thành nhân tử
a(b^2+c^2+bc)+b(a^2+c^2+ac)+c(a^2+b^2+ab)
Phân tích đa thức thành nhân tửA=8abc+4(ab+bc+ca)+2(a+b+c)+1
A = 8abc + 4ab + 4bc + 4ca + 2a + 2b + 2c + 1
phân tích đa thức thành nhân tử
a,A=x3+y3+z3-3xyz
b,B=(x+y)3+(y-z)3+(z-x)3
c,C=(x2+x+1) (x2+x+2)-12
d,D=bc(b+c)+ac(c-a)-ab(a+b)
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
Phân tích đa thức thành nhân tửA=a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)+2abc
Phân tích đa thức thành nhân tửA=a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)+3abc
Bài 1: Phân tích các đa thức sau thành nhân tử
a) 2x2 - xy + 2x - y
b) ac + bc - 2 (a + b)
c) x2 + 4xy + 2x + 8y
d) x2 + 2xy + 3x + 6y
\(a,=x\left(2x-y\right)+\left(2x-y\right)=\left(x+1\right)\left(2x-y\right)\\ b,=\left(a+b\right)\left(c-2\right)\\ c,=x\left(x+4y\right)+2\left(x+4y\right)=\left(x+2\right)\left(x+4y\right)\\ d,=x\left(x+2y\right)+3\left(x+2y\right)=\left(x+3\right)\left(x+2y\right)\)
Phân tích đa thức thành nhân tử.
1, a(b^2+c^2+bc)+b(c^2+a^2+ac)+c(a^2+b^2+ab)
2, (a+b+c)(ab+bc+ca)-abc
3, a(a+2b)^3-b(2a+b)^3
ai có thể giảng cho mình dạng toán tìm số tự nhiên thỏa mãn đièu kiện chia hết ko
hãy nêu ra cách giải cụ thể cho câu sau 3a-11 chia hết cho a+2 tìm a
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Bài 2 : Phân tích các đa thức sau thành nhân tử: a) A = ab(a - b) + bc ( b - c) + ac ( c - a) .
\(=a^2b-ab^2+b^2c-bc^2+ac^2-a^2c\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2-bc-ab-ac\right)\)
\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]\)
phân tích đa thức thành nhân tử
a) (a^2+b^2-5)^2-4(ab+2)^2
b) bc(b+c)+ac(c-a)+ab(a+b)
Phân tích đa thức thành nhân tử
a) ab(a+b)-bc(b+c)+ca(c+a)+abc
b)a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc
c)abc-(ab+bc+ac)+(a+b+c)-1
d)bc(b+c)+ac(c-a)-ab(a+b)
Giúp với ạ ! Cảm ơn