CMR nếu a^3+b^3+c^3=3abc thì a=b=c
CMR : nếu a +b +c = 0 hoặc a = b = c thì a^3 + b^3 + c^3 = 3abc
CMR nếu: a^3+b^3+c^3=3abc và a,b,c là các số dương thì a=b=c.
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\left(a+b+c\right)\left(a^2-ab+b^2-bc+c^2-ca\right)=0\)\(Màa,b,c\ne0\Rightarrow a^2-ab+b^2-bc+c^2-ca=0\Rightarrow a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)
\(a,b,c\ne0\Rightarrow a-b=0;b-c=0;c-a=0\Rightarrow a=b=c\)
CMR : nếu a + b + c = 0 thì a^3 + b^3 + c^3 - 3abc = 0
Mình là thành viên mới. Mong các bạn giúp mình
Ta có : a + b + c = 0 => a = -(b + c)
Nên a3 + b3 + c3 - 3abc
= [-(b + c)]3 + b3 + c3 - 3abc
= -(b3 + 3b2c + 3bc2 + c3) + b3 + c3 - 3abc
= -b3 - 3b2c - 3bc2 - c3 + b3 + c3 - 3abc
= -3bc(a + b + c)
Mà a + b + c = 0
=> 3bc(a + b + c) = 0
Vậy a3 + b3 + c3 - 3abc = 0 (đpcm)
giúp mình nha. ai nhanh có tick :cmr nếu a+bx/b+cy=b+cx/c+ay=c+ax/a+by thì a^3+b^3+c^3-3abc=0
thank cìu
a, Cmr : ( a + b + c ). ( a^2 + b^2 + c^2 -ab - ac - bc ) = a^3 + b^3 + c^3 -3abc
b, Áp dụng :
a+b+c= 0 thì
a^3 + b^3 + c^3 = 3abc
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
b,
Ta có:
\(\left(a+b+c\right)^3=0\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)
Cần gấp, ai nhanh mik tick.
CMR nếu a3 +b3+c3 =3abc và a,b,c là các số dương thì a=b=c
Ta có a^3 + b^3 + c^3 = (a+b+c). (a^2+b^2+c^2-a.b-b.c-a.c)+3abc= 3abc
= (a+b+c)(a^2+b^2+c^2-a.b-b.c-a.c)=0
Ta Thấy a,b,c là số dương nên a+b+c khác 0 suy ra ( a^2+b^2+c^2-a.b-b.c-a.c)=0 Nên a=b=c
- k Mình Nhé
Ta có: a3 + b3 + c3 = 3abc
<=> a3 + b3 + c3 − 3abc = 0
<=> (a + b + c) (a2 + b2 + c2 − ab − bc − ca) = 0
<=> a2 + b2 + c2 − ab − bc − ca = 0 (do a + b + c > 0)
<=> 1/2(2a2 + 2b2 + 2c2 − 2ab − 2bc − 2ca) = 0
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ac + a2 = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a − b = b − c = c − a = 0
<=> a = b = c
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
1) c/m :nếu a+b+c = 0 thì a3 + b3+c3 =3abc
2) nếu a,b,c>0 thì a3 +b3+c3 > = 3abc. dấu '' ='' xảy ra khi a=b=c
cmr: \(a^3+b^3+c^3=3abc\) và a,b,c >0 thì a=b=c
Ta có a,b,c dương nên ta áp dụng Bđt Cô-si ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi \(a=b=c\)
Đpcm
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)=0\)
\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(a^2-2ab+b^2\right)\left(b^2-2bc+c^2\right)\left(c^2-2ac+a^2\right)=0\)
\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0.\)
vì \(\left(a-b\right)^2\ge0\)
\(\left(b-c\right)^2\ge0\)
\(\left(c-a\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a-b=b-c=c-a\)
\(\Rightarrow a=b=c\left(dpcm\right)\)