Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu Hữu Trung
Xem chi tiết
Dudũbng Luu
Xem chi tiết
Bùi Mạnh Khôi
18 tháng 8 2018 lúc 11:30

Ta có :

\(49x^4-81y^2\)

\(=\left(7x^2\right)^2-\left(9y\right)^2\)

\(=\left(7x^2-9y\right)\left(7x^2+9y\right)\)

nghia
Xem chi tiết
Toru
23 tháng 9 2023 lúc 18:38

Bài 1.

\(a, (3x-4)^2\)

\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)

\(=9x^2-24x+16\)

\(b,\left(1+4x\right)^2\)

\(=1^2+2\cdot1\cdot4x+\left(4x\right)^2\)

\(=16x^2+8x+1\)

\(c,\left(2x+3\right)^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)

\(=8x^3+36x^2+54x+27\)

\(d,\left(5-2x\right)^3\)

\(=5^3-3\cdot5^2\cdot2x+3\cdot5\cdot\left(2x\right)^2-\left(2x\right)^3\)

\(=125-150x+60x^2-8x^3\)

\(e,49x^2-25\)

\(=\left(7x\right)^2-5^2\)

\(=\left(7x-5\right)\left(7x+5\right)\)

\(f,\dfrac{1}{25}-81y^2\)

\(=\left(\dfrac{1}{5}\right)^2-\left(9y\right)^2\)

\(=\left(\dfrac{1}{5}-9y\right)\left(\dfrac{1}{5}+9y\right)\)

Bài 2.

\(a,\left(x-5\right)^2-\left(x+7\right)\left(x-7\right)=8\)

\(\Rightarrow x^2-2\cdot x\cdot5+5^2-\left(x^2-7^2\right)=8\)

\(\Rightarrow x^2-10x+25-\left(x^2-49\right)=8\)

\(\Rightarrow x^2-10x+25-x^2+49=8\)

\(\Rightarrow\left(x^2-x^2\right)-10x=8-25-49\)

\(\Rightarrow-10x=-66\)

\(\Rightarrow x=\dfrac{33}{5}\)

\(b,\left(2x+5\right)^2-4\left(x+1\right)\left(x-1\right)=10\)

\(\Rightarrow\left(2x\right)^2+2\cdot2x\cdot5+5^2-4\left(x^2-1^2\right)=10\)

\(\Rightarrow4x^2+20x+25-4x^2+4=10\)

\(\Rightarrow\left(4x^2-4x^2\right)+20x=10-25-4\)

\(\Rightarrow20x=-19\)

\(\Rightarrow x=\dfrac{-19}{20}\)

#\(Toru\)

Kiều Vũ Linh
23 tháng 9 2023 lúc 18:47

Bài 1

a) (3x - 4)²

= (3x)² - 2.3x.4 + 4²

= 9x² - 24x + 16

b) (1 + 4x)²

= 1² + 2.1.4x + (4x)²

= 1 + 8x + 16x²

c) (2x + 3)³

= (2x)³ + 3.(2x)².3 + 3.2x.3² + 3³

= 8x³ + 36x² + 54x + 27

d) (5 - 2x)³

= 5³ - 3.5².2x + 3.5.(2x)² - (2x)³

= 125 - 150x + 60x² - 8x³

e) 49x² - 25

= (7x)² - 5²

= (7x - 5)(7x + 5)

f) 1/25 - 81y²

= (1/5)² - (9y)²

= (1/5 - 9y)(1/5 + 9y)

Toru
23 tháng 9 2023 lúc 18:52

Bài 3.

\(a,A=x^2-6x+19\)

\(=x^2-6x+9+10\)

\(=\left(x^2-2\cdot x\cdot3+3^2\right)+10\)

\(=\left(x-3\right)^2+10\)

Ta thấy: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+10\ge10\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: \(Min_A=10\) khi \(x=3\)

\(b,B=-x^2+8x-20\)

\(=-x^2+8x-16-4\)

\(=-\left(x^2-8x+16\right)-4\)

\(=-\left(x^2-2\cdot x\cdot4+4^2\right)-4\)

\(=-\left(x-4\right)^2-4\)

Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-4\right)^2-4\le-4\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy \(Max_B=-4\) khi \(x=4\)

\(c,C=4x^2+12x+100\)

\(=4x^2+12x+9+91\)

\(=\left[\left(2x\right)^2+2\cdot2x\cdot3+3^2\right]+91\)

\(=\left(2x+3\right)^2+91\)

Ta thấy: \(\left(2x+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+3\right)^2+91\ge91\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)

Vậy \(Min_C=91\) khi \(x=\dfrac{-3}{2}\)

\(d,D=25+4x-x^2\)

\(=-x^2+4x-4+29\)

\(=-\left(x^2-2\cdot x\cdot2+2^2\right)+29\)

\(=-\left(x-2\right)^2+29\)

Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+29\le29\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy \(Max_D=29\) khi \(x=2\)

#\(Toru\)

Lê Trinh
Xem chi tiết
Hồng Phước
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2020 lúc 11:36

a) Ta có: \(9x^4-16y^6\)

\(=\left(3x^2\right)^2-\left(4y^3\right)^2\)

\(=\left(3x^2-4y^3\right)\left(3x^2+4y^3\right)\)

b) Ta có: \(-49x^4+81y^2\)

\(=81y^2-49x^4\)

\(=\left(9y\right)^2-\left(7x^2\right)^2\)

\(=\left(9y-7x^2\right)\left(9y+7x^2\right)\)

Lê Trinh
Xem chi tiết
Lê Trinh
Xem chi tiết
Lê Trinh
Xem chi tiết
Lê Trinh
Xem chi tiết