bài 2: cho hình vẽ biết:: Ax//Dy. chứng minh rằng A^+B^+O^=360 độ
cho hình vẽ trong đó Ax//Dy;A,C,D thẳng hàng
a, chứng minh góc xAC+ACB+CBy=360 độ
b,tính số đo của tam giác BCD nếu biết góc xAD=11độ và góc yBC-ACB=30 độ
Cho hình vẽ, biết Ax//Dy, góc xAd= 100 độ
a) Tính góc ADy
b) Biết góc ADE=110 độ, góc DEz=30 độ. Chứng minh Dy//Ez
c) Ax có song song với Ez không? vì sao
cho hình vẽ biết Ax song song với Cy . Chứng minh : góc A + góc B + góc C = 360 độ.
Bạn tự vẽ hình nha =="
Kẻ Bz // Ax
mà Ax // Cy
=> Bz // Cy
Bz // Ax
=> A + B1 = 1800 (2 góc trong cùng phía)
Bz // Cy
=> C + B2 = 1800 (2 góc trong cùng phía)
Ta có:
A + B + C
= A + B1 + B2 + C
= 1800 + 1800
= 3600 (đpcm)
Chúc bạn học tốt ^^

Kẻ thêm tia Bz
Ta có : \(\widehat{xAB}=\widehat{B_3}\)(mà 2 góc này ở vị trí so le trong)
⇒Ax//Bz
Chứng minh tương tự: \(\widehat{BCy}=\widehat{C_4}\)(mà 2 góc này ở vị trí so le trong)
\(\Rightarrow\) Bz//Cy
⇒Ax//Cy
Cho 2 tam giác ABC và DBC chung cạnh huyền BC (A,D thuộc cùng một nửa mặt phẳng BC). Vẽ tia Ax sao cho AC là phân giác góc DAx. Vẽ tia Dy sao cho DB là phân giác góc ADy; Ax cắt Dy tại E, O là giao điểm Ac và BD
a) Chứng minh OE vuông góc BE
b) Chứng minh B,E,C thẳng hàng
cho hình vẽ:
biết Ax // Cy
chứng minh
B+BAx+BCy=360 độ
Ta có Ax // By
Vẽ Bz // Ax và nằm trong góc ABC(*)
Vì Ax // Bz (cách dựng)
góc BAx + góc ABz =180 độ (1)
VÌ Ax // Cy ,Bz//Ax > Bz //Cy(tính chất 3 đường thẳng song song)
góc CBz+BCy=180 độ(2)
Từ (1) và (2) >góc BAx +góc ABz+góc CBz+góc BCy=180 độ +180Độ=360độ
Mà góc ABz+góc CBz= góc B (theo *)
>Góc B +góc BAx +góc BCy=360 độ
Cho 2 tam giác vuông ABC và DBC chung cạnh huyền BC ( A,D cùng thuộc cùng một nửa mặt phẳng bờ BC). Vẽ tia Ax sao cho AC là tia phân giác của góc DAx, vẽ tia Dy sao cho DB là tia phân giác ADy, Ax cắt Dy tại E
a) Gọi O là giao điểm của AC và BD. Chứng minh OE vuông góc BE
b) Chứng minh: B,E,C thẳng hàng

a) AC là phân giác của ^DAx (gt) mà ^BAC = 900 (gt) nên AB là phân giác ngoài tại đỉnh A của \(\Delta\)ADE
Kết hợp với DB là phân giác trong tại đỉnh D của \(\Delta\)ADE
=> BE là phân giác của ^AEy
Mà EO là phân giác của ^AED (3 đường phân giác trong của \(\Delta\)AED đồng quy tại 1 điểm )
=> ^BEO = 900 (hai đường phân giác của hai góc kề bù)
Vậy OE \(\perp\)BE (đpcm)
b) Chứng minh tương tự câu a, ta được OE \(\perp\)EC
Từ đó suy ra \(BE\equiv CE\)
Vậy B,E,C thẳng hàng (đpcm)
Cho hình vẽ, chứng minh rằng góc A + góc B + góc C= 360 độ và Bz // Ax
(Hình vẽ dưới bình luận)
Cho hình vẽ bên. Biết a vuông góc m tại A , b vuông góc m tại C .
a. Chứng minh a //b .
b. Cho xBD =60 độ . Tính số đo D1 , D2 .
c. Gọi Bt và Dy lần lượt là tia phân giác của ABD và CDE. Chứng minh Bt//Dy.
Bài 5: Cho hình thang ABCD (AB//CD), biết Ax,Dy lần lượt là phân giác của góc A, góc D của hình thang. Chứng minh Ax vuông góc với Dy
Bài 6: Cho hình thang ABCD (AB//CD,AB<CD). Qua B kẻ đường thẳng song song với AD cắt CD tại E. Chứng minh:
a) AD=BE , AB=DE
b) CD-AB=CE
c) BC+AD>CD_AB
Bài 5
\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)
\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)
\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)
Xét tg ADE có
\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)
\(\Rightarrow Ax\perp Dy\)
Bài 6:
a/
Ta có
AB//CD => AB//DE
BE//AB (gt)
=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)
b/
CD - DE = CE
Mà AB = DE (cmt)
=> CD - AB = CE
c/
Xét tg BCE có
BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
Mà CE = CD - DE và DE = AB (cmt) và BE = AD
=> BC+BE = BC + AD>CE = CD - AB

Gọi G là giao điểm của hai đường phân giác Ax và By
Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)
\(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\))
\(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900
Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)
⇒ \(\widehat{DGA}\) = 1800 - 900 = 900
Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)