Cho tam giác ABC, D thuộc cạnh AB, đường thẳng đi qua D // BC cắt AC tại E và cắt đường thẳng đi qua C // với AB tại H. Qua H kẻ đường thẳng // AB cắt BC tại I. Chứng minh:
a) DA/CG = DE/EG
b) DA.EG = DB.DE
Cho tam ABC cân tại A. Kẻ d qua A và //BC. Lấy H bất kỳ thuộc cạnh BC. Đường thẳng qua H // AB cắt d tại E; đường thẳng qua H //AC cắt d tại G. Chứng minh:
a) Tam giác HGE cân
b) BE đi qua trung điểm của AH
c) Ba đường thẳng BE, CG, AH cùng đi qua một điểm.
a) Xét tứ giác AEBH có
AB//HE(gt)
AE//BH(gt)
Do đó: AEBH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AB=HE(Hai cạnh đối trong hình bình hành AEBH)(1)
Xét tứ giác AGHC có
AG//HC(gt)
AC//GH(gt)
Do đó: AGHC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: AC=HG(Hai cạnh đối trong hình bình hành)(2)
mà AB=AC(ΔABC cân tại A)(3)
nên từ (1), (2) và (3) suy ra HG=HE
Xét ΔHGE có HG=HE(cmt)
nên ΔHGE cân tại H(Định nghĩa tam giác cân)
Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB, AC tại D và E. Qua C kẻ đường thẳng song song với AB cắt DE tại F. Gọi H là giao điểm của AC với BF. Đường thẳng qua H song song với AB cắt BC tại I. Chứng minh rằng:
a. DA/DB = ED/FE
b. HA.HE = HC2
a. Xét tam giác ABC có:
DE//BC (gt)
=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)(định lý Ta-let) (1)
Xét tam giác ADE có:
AD//CF (gt)
=>\(\dfrac{EA}{EC}=\dfrac{DE}{EF}\)(định lý Ta-let) (2)
Từ (1) và (2) suy ra:\(\dfrac{DA}{DB}=\dfrac{ED}{FE}\)
câu b) bạn cố tình kẻ EI//BC hay sao vậy nhỉ?
Xét tam giác EHF có:
EF//BC (gt)
=>\(\dfrac{HC}{HE}=\dfrac{HB}{HF}\)(định lý Ta-let) (3)
Xét tam giác BCF có:
HI//FC (HI//AB và FC//AB)
\(\dfrac{HB}{HF}=\dfrac{BI}{IC}\)(định lý Ta-let) (4)
Xét tam giác ABC có:
HI//AB (gt)
=>\(\dfrac{BI}{IC}=\dfrac{AH}{HC}\)(định lí Ta-let) (5)
Từ (3),(4),(5) suy ra: \(\dfrac{HC}{HE}=\dfrac{HA}{HC}\)
=>HE.HA=HC2
Cho tam giác ABC, vẽ đường thẳng song song với BC cắt cạnh AB tại D, cắt cạnh AC tại E. Qua C kẻ Cx song song với AB cắt CE tại G.Gọi H là giao điểm của AC và BG. Kẻ HI// AB ( I thuộc BC)
a) DA. EG= BD. DE
b) HC^2= HE. HA
c) 1/IH= 1/AB+ 1/CG
d) Kéo dài IH cắt AG tại M. Chứng minh 2/IM= 1/AB+1/CG
Cho tam giác ABC và một điểm D trên cạnh AB. Đường thẳng qua D song song với BC cắt AC ở E và cắt đường thẳng qua C song song với AB tại một điểm G. Nối BG cắt AC ở H. Qua H kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh rằng:
a/ DA.EG = DB.DE b/ HC2 = HE.HA
cho tam ABC lấy điểm D trên cạnh AB.Qua B kẻ đường thẳng song song với bc cắt AC tại E. a, Biết AD=3cm AB=5cm BC=10cm.Tính de b, Qua C kẻ đường thẳng song song với AB cắt tia DE tại G. CM: DA.EG=DB.DE
Sửa đề: DE//BC
a) Xét ΔABC có
D∈AB(gt)
E∈AC(gt)
DE//BC(gt)
Do đó: \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)(Hệ quả của Định lí ta lét)
\(\Leftrightarrow\dfrac{3}{5}=\dfrac{DE}{10}\)
hay DE=6(cm)
Vậy: DE=6cm
Cho tam giác ABC vuông tại A, AB = 6cm, BC = 10cm, điểm D thuộc AC sao cho DC = 3cm. Qua D kẻ đường thẳng vuông góc với AC và cắt cạnh BC tại M. Đường thẳng vuông góc với BC tại M cắt BA tại E. Chứng minh:
a) tam giác ABC đồng dạng với tam giác MDC. Tính độ dài MD, MC.
b) tam giác ABC đồng dạng với tam giác MBE và BE.BA = BM.BC
c) góc BMA= góc BEC
a: Xét ΔABC vuông tại A và ΔDMC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDMC
=>AB/DM=BC/MC=AC/DC
=>6/DM=10/MC=8/3
=>DM=6:8/3=2,25cm và MC=10:8/3=10*3/8=30/8=3,75cm
b: Xét ΔABC vuông tại A và ΔMBE vuông tại M có
góc B chung
=>ΔABC đồng dạng với ΔMBE
=>BA/BM=BC/BE
=>BA*BE=BM*BC
Bài 1: Cho tam giác ABC vuông tại A, AB = 6cm, BC = 10cm, điểm D thuộc AC sao cho DC = 3cm. Qua D kẻ đường thẳng vuông góc với AC và cắt cạnh BC tại M. Đường thẳng vuông góc với BC tại M cắt BA tại E. Chứng minh:
a) tam giác ABC đồng dạng với tam giác MDC. Tính độ dài MD, MC.
b) tam giác ABC đồng dạng với tam giác MBE và BE.BA = BM.BC
c) góc BMA= góc BEC
Bài 2: Cho ABC có AB = 14cm, AC = 10cm, CB = 12cm. Đường phân giác của C cắt cạnh BC ở D.
a) Tính độ dài các đoạn thẳng BD, DC.
b) Tính tỉ số diện tích của ABD và !ACD.
c) Qua D kẻ đường thẳng song song với AB cắt cạnh AC ở E. Tính DE, AE, EC
Ai đó làm ơn làm Phước giúp mình bài 1 với câu c bài 2 với ạ
Xin mọi người đó😭
giúp mk nha
Cho tam giác ABC, điểm D bất kỳ trên cạnh AB. Đường thẳng qua D và song song với BC cắt AC tại E, cắt đường thẳng qua C và song song với AB tại G. H là giao điểm của BG và AC
a) chứng minh DB=GB và DA.EG=DB.DE
b)Chứng minh HC^2=HE.HA
a: Xét tứ giác BDGC có
BD//GC
BC//GD
=>BDGC là hình bình hành
=>BD=GC
AD//GC
=>AD/CG=DE/EG
=>AD*EG=DE*CG
=>AD*EG=DE*DB
b: DE//CB
=>BD/BA=CE/CA
AB//CG
=>CG/AB=CH/HA
=>BD/BA=CH/HA
=>CE/CA=CH/HA=HE/CH
=>HC^2=HE*HA