Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:29

- Với \(y=0\) không phải nghiệm

- Với \(y\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{x}{y}+\dfrac{1}{y}=7\\x^2+\dfrac{x}{y}+\dfrac{1}{y^2}=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}+\dfrac{x}{y}=7\\\left(x+\dfrac{1}{y}\right)^2-\dfrac{x}{y}=13\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{1}{y}\right)^2+x+\dfrac{1}{y}-20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{y}=4\\x+\dfrac{1}{y}=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4-\dfrac{1}{y}\\x=-5-\dfrac{1}{y}\end{matrix}\right.\)

Thế vào pt đầu...

nguyenthingocanh
Xem chi tiết
T.Huyền
Xem chi tiết
Akai Haruma
30 tháng 11 2018 lúc 20:20

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} xy+1=7y-x\\ (xy+1)^2-xy=13y^2\end{matrix}\right.\)

\(\Rightarrow (7y-x)^2-xy=13y^2\)

\(\Leftrightarrow 36y^2-15xy+x^2=0\)

\(\Leftrightarrow (12y-x)(3y-x)=0\)

\(\Rightarrow \left[\begin{matrix} x=12y\\ x=3y\end{matrix}\right.\)

Nếu \(x=12y\). Thay vào PT(1):

\(12y.y+12y+1=7y\)

\(\Leftrightarrow 12y^2+5y+1=0\) (pt vô nghiệm)

Nếu \(x=3y\Rightarrow 3y.y+3y+1=7y\)

\(\Leftrightarrow 3y^2-4y+1=0\)

\(\Leftrightarrow (3y-1)(y-1)=0\Rightarrow \left[\begin{matrix} y=\frac{1}{3}\rightarrow x=1\\ y=1\rightarrow x=3\end{matrix}\right.\)

Vậy HPT có nghiệm \((x;y)=(1;\frac{1}{3}); (3;1)\)

Akai Haruma
30 tháng 11 2018 lúc 20:23

Hoặc đến đoạn $36y^2-15xy+x^2=0$ nếu bạn không biết xử lý ra sao thì có thể thực hiện cách sau:

Dễ thấy $y=0$ không phải nghiệm của HPT. Do đó $y\neq 0$

Đặt $x=ty$

\(\Rightarrow 36y^2-15.ty.y+(ty)^2=0\)

\(\Leftrightarrow y^2(36-15t+t^2)=0\)

\(\Rightarrow 36-15t+t^2=0\) (do $y\neq 0$)

Đến đây ta giải PT bậc 2 một ẩn như bình thường để tìm ra mối quan hệ của $x,y$

hà ngọc ánh
Xem chi tiết
trần gia bảo
Xem chi tiết
trần xuân quyến
Xem chi tiết
trần xuân quyến
Xem chi tiết
Đen đủi mất cái nik
Xem chi tiết
Nguyen Phuc Duy
Xem chi tiết
Pham Van Hung
21 tháng 1 2020 lúc 20:12

b, \(x^3+3x^2y-4y^3+x-y=0\)

\(\Leftrightarrow x^3-x^2y+4x^2y-4xy^2+4xy^2-4y^3+x-y=0\)

\(\Leftrightarrow x^2\left(x-y\right)+4xy\left(x-y\right)+4y^2\left(x-y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+4xy+4y^2+1\right)=0\)

\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)

Khi đó pt (2) của hệ trở thành: 

\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-5^2=0\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy hệ có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right),\left(-5;-5\right)\right\}\)

Khách vãng lai đã xóa