Cho x+y=1 tính giá trị biểu thức A=x^3 +y^3 +3xy(x^2 +y^2)+6*x^3*y^2 +6*x^2*y^3
1 . Cho x+y=a và x.y=b . Tính giá trị biểu thức sau theo a và b :
a) x2 + y2
b) x3 + y3
c) x4 + y4
d) x5 + y5
2 . Cho x+y=1 .Tính giá trị biểu thức x3 + y3 + 3xy và x-y=1 .Tính giá trị biểu thức x3 - y3 - 3xy
3 . Cho a+b=1 . Tính giá trị biểu thức : M = a3 + b3 + 3ab .( 12 + b2 ) + 6.a2 .b2 . ( a+b)
Rút gọn rồi tính giá trị của biểu thức
a)M=(x^2+3xy-3x^3)+(2y^3-xy+3x^3)-y^3 tại x=5 và y=4
b) N= x^2(x+y)-y(x^2-y^2) tại x=-6 y=8
c)P=x^2+1/2x+1/16 biết x= 3/4
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
Tính giá trị biểu thức;
A=(2x-y)(4x^2-2xy+y^2)+(3x-y)(9x^2+3xy+y^2)-35(x-1)(x^2+x+1)
B=(x+2)^3+(x-2)^3-2x(2x^2+12)
C=(x-1)^3-(x+1)^3+6(x+1)(x-1)
B = (x + 2)3 + (x - 2)3 - 2x(2x2 + 12)
B = (x + 2)(x2 + 2x.2 + 22) + (x - 2)(x2 - 2x.2 + 22) - 2x(2x3 + 12)
B = x3 + 4x3 + 4x + 2x2 + 8x + 8 + x3 - 4x2 + 4x - 2x2 + 8x - 8 - 4x3 - 24x
B = -2x3
a/chứng minh rằng biểu thức sau không âm với mọi giá trị của biến
A=(-15.x^3.y^6):(-5xy^2)
b/chứng minh rằng giá trị biểu thức sau ko phụ thuộc vào giá trị của biến y(x,y khác 0)
B=2/3 x^2 y^3:(-1/3xy)+2x(y-1)(y+1)
1. Phân tích đa tức thành nhân tử: (x-2)(x-4)(x-6)(x-9)+15
2. Tính giá trị biểu thức sau, biết x^3 -x=6. A=x^6 -2x^4 +x^3 +x^2 -x
3.Cho x, y là 2 số khác nhau thỏa manc: x^2 +y=y^2 +x. Tính giá trị biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
Cho x,y là 2 số khác nhau thỏa mãn x^2+y=y^2+x. Tính giá trị biểu thức A=x^3+y^3+3xy(x^2+y^2)+6x^2y^2(x+y)
Ta có: x2+y=y2+x
=>x2+y-y2+x=0
=>(x2-y2)-(x-y)=0
=>(x-y)(x+y)-(x-y)=0
=>(x-y)(x+y-1)=0
=>x-y=0 hoặc x+y-1=0
=>x+y=1(TH1 loại do x khác y)
ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)
=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2
=>A=x2-xy+y2+3x3y+3xy3+6x2y2
=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)
=>A=1-3xy+3x2y+3xy2
=>A=1+3xy(-1+a+b)
=>A=1+3xy(-1+1)
=>A=1+3xy.0
=>A=1
Vậy A=1 khi x2+y=y2+x và x khác y.
Lê Đức Huy chép sai đề cau đầu kìa!
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
Cho x+y=5. Tính giá trị của biểu thức:
A=x^3 + y^3 - 2x^2 - 2y^2 + 3xy(x + y) - 4xy + 3(x + y) + 10
\(A=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x^3+y^3\right)-2\left(x^2+y^2\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(\left(x+y\right)^2-2xy\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(x+y\right)^2+4xy+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(5\right)^3-3xy\left(5\right)-2\left(5\right)^2+4xy+3xy\left(5\right)-4xy+3\left(5\right)+10\)
\(A=125-15xy-50+4xy+15xy-4xy+15+10\)
\(A=100\)
a)Cho x+y=2 và x.y=-3. Tính giá trị biểu thức x4+y4
b) Cho x+y=1.Tính x3+y3+3xy
c) Cho x-y=. Tính x3-y3-3xy
d) Cho x+y=3. Tính A=x2+2xy+y2-4x-4y+1
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự