Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hải hà
Xem chi tiết
hải hà
Xem chi tiết
hải hà
Xem chi tiết
Pham Van Hung
15 tháng 8 2018 lúc 18:01

        \(x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^3+x^2\right)+2x^2+2x+1\)

\(=\left(x^2+x\right)^2+2.\left(x^2+x\right).1+1^2\)

\(=\left(x^2+x+1\right)^2\)

Chúc bạn học tốt.

phạm hương trà
Xem chi tiết
Hoàng Lê Bảo Ngọc
3 tháng 9 2016 lúc 10:04

Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)

Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)

Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)

\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)

Dùng phương pháp hệ số bất định :

\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)

Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)

Phương Chi Nguyễn
Xem chi tiết
I don
22 tháng 9 2019 lúc 10:35

2x4 - 3x3 - 7x2 +6x+8

= 2x4 - 4x3 + x3 - 2x2 - 5x2 +10x - 4x +8

= 2x3.(x-2) +x2.(x-2) - 5x.(x-2) - 4.(x-2)

= (x-2).(2x3 +x2 - 5x -4)

= (x-2).(2x3 + 2x2 - x2 - x - 4x-4)

= (x-2).(x+2).(2x2 -x -4)

....

phạm hương trà
Xem chi tiết
Hoàng Lê Bảo Ngọc
3 tháng 9 2016 lúc 10:50

Đặt \(Q\left(x\right)=x^4-x^3-10x^2+2x+4\)

Giả sử nhân tử khi phân tích P(x) là \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Khai triển : \(P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+x^3\left(c+a\right)+x^2\left(d+ac+b\right)+x\left(ad+bc\right)+bd\)

Áp dụng hệ số bất định : \(\begin{cases}c+a=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) . Giải ra được \(\begin{cases}a=-3\\b=-2\\c=2\\d=-2\end{cases}\)

Vậy \(P\left(x\right)=\left(x^2-3x-2\right)\left(x^2+2x-2\right)\)

 

Phương An
3 tháng 9 2016 lúc 10:25

Giả sử:

\(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)

Ta có:

\(\begin{cases}a+c=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) \(\Rightarrow\begin{cases}a=1\\b=1\\d=4\\c=-15\end{cases}\)

\(\Rightarrow P\left(x\right)=\left(x^2+x+1\right)\left(x^2-15x+4\right)\)

anh đây quá đẹp trai
8 tháng 9 2021 lúc 15:04

dăm ba mấy câu này ko làm đc thì làm chó

Khách vãng lai đã xóa
Diệu Anh Hoàng
Xem chi tiết
Vấn Vũ Hồng
12 tháng 9 2018 lúc 22:11

Đặt \(x^4-2x^3-x^2-2x+1=\left(x^2+ax+1\right)\left(x^2+bx+1\right)=x^4+bx^3+x^2+ãx^3+abx^2+ax+x^2+bx+1\)

=> \(x^4-2x^3-x^2-2x+1=x^4+\left(a+b\right)x^3+\left(ab+2\right)x^2+\left(a+b\right)x+1\)

=> \(\hept{\begin{cases}a+b=-2\\ab+2=-1\\a+b=-2\end{cases}}\Rightarrow a=-3;b=1\)

Diệu Anh Hoàng
Xem chi tiết
Pham Van Hung
11 tháng 9 2018 lúc 19:17

       \(x^4-2x^3-x^2-2x+1\)

\(=\left(x^4+x^3+x^2\right)-3x^3-3x^2-3x+\left(x^2+x+1\right)\)

\(=x^2\left(x^2+x+1\right)-3x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-3x+1\right)\)

Chúc bạn học tốt.

An Hy
Xem chi tiết
thu trang
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
15 tháng 8 2018 lúc 14:19

\(x^4+2x^3+3x^2+2x+1\)

\(=x^4+x^3+x^3+x^2+x^2+x^2+x+x+1\)

\(=\left(x^4+x^3+x^2\right)+\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+x+1\right)=\left(x^2+x+1\right)^2\)