Chứng minh số 3599 viết được dưới dạng tích của 2 STN khác 1
Chứng minh rằng các số sau viết được dưới dạng tích của 2 số tự nhiên khác 1
a} 3599 b} 899 c} 9991
Chứng minh rằng các số sau viết được dưới dạng tích của 2 số tự nhiên khác 1
a} 3599 b} 899 c} 9991
a)\(3599=3600-1=60^2-1^2=\left(60-1\right).\left(60+1\right)=59.61\)
b)\(899=900-1=30^2-1^2=\left(30-1\right).\left(30+1\right)=29.31\)
c)\(9991=10000-9=100^2-3^2=\left(100-3\right)\left(100+3\right)=97.103\)
Ôn lại 7 Hằng đẳng thức đáng nhớ
Vận dụng : a) Chứng minh rằng số 3599 được viết dưới dạng tích của 2 số tự nhiên khác 1
b) Chứng minh rằng: Biểu thức sau đây được viết dưới dạng tổng bình phương của 2 biểu thức:
x2 + 2( x + 1 )2 + 3( x + 2 )2 + 4( x + 3)2
CMR:3599 viết được dưới dạng tích của 2 số tự nhiên khác 1[ap dung hang 9 va hang10]
CMR: 3599 viết được dưới dạng tích của 2 số tự nhiên khác 1. [áp dụng hằng đẳng thức số 9 và 10]
3599=3600-1=602-1=(60-1)(60+1)
B1. Chứng minh rằng: số 3599 viết được dưới dạng tích của hai số tự nhiên khác 1.
B2. x+y+z = 0 và xy+yz+xz = 0. Chứng minh x=y=z
B3. Tính giá trị biểu thức:
a) \(\frac{63^2-47^2}{215^2-105^2}\) b) \(\frac{437^2-363^2}{537^2-363^2}\)
B4. So sánh A=262 - 242 và B=272 - 252
B3.
a) =\(\frac{\left(63+47\right).\left(63-47\right)}{\left(215+105\right).\left(215-105\right)}\) b) =\(\frac{\left(437+363\right).\left(437-363\right)}{\left(537+463\right).\left(537-463\right)}\)
=\(\frac{110.16}{320.110}\) =\(\frac{800.74}{1000.74}\)
=\(\frac{1}{20}\) =\(\frac{4}{5}\)
CMR :
Số 3599 viết được dưới dạng tích 2 số tự nhiên khác 1 .
Ta có :
\(3599=3600-1\)
\(=60^2-1^2\)
\(=\left(60+1\right)\left(60-1\right)\)
\(=61\times59\)
Vậy số 3599 viết được dưới dạng tích 2 số tự nhiên khác 1 (đpcm)
1. Chứng minh rằng
a) Số 17 không viết được dưới dạng tổng của ba hợp số khác nhau .
b) Mọi số lẻ lớn hơn 17 đều viết được dưới dạng tổng của ba hợp số khác nhau .
1.a) Tổng của ba hợp số khác nhau nhỏ nhất bằng 4+6+8=18
Do vậy số 17 không viết được dưới dạng tổng của ba hợp số khác nhau .
b) Gọi 2k+1 là số lẻ bất kì lớn hơn 17
Ta có : 2k+1 =4+9+( 2k-12 )
2k-12 là hợp số lớn hơn 4
4 ; 9 ;2k-12 là các hợp số khác nhau
sách nâng cao phát triển : trang 25 , bài 120
cho hỏi tại sao 2k - 12 là hợp số lớn hơn 4
Chứng minh rằng:
a, 17 không viết được dưới dạng tổng của 3 hợp số khác nhau .
b, Một số lẻ lớn hơn 17 đều viết được dưới dạng tổng của 3 hợp số khác nhau.
a) Do tổng của 3 hợp số nhỏ nhất là 4+6+8=18
mà 18>17 nên 17 ko viết được dưới dạng 3 hợp số khác nhau