TÍNH TỔNG DÃY SAU :
1.2 + 2.3 + 3.4 + 4.5 +...+99.100
Tính tổng sau: A=1.2+2.3+3.4+4.5+5.6+.....+99.100
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 333300
A=1*2+2*3+3*4+...+99*100
A=100*101*102:3
A=343400(công thức)
http://olm.vn/hoi-dap/question/96300.html
Tính tổng: S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.
`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`
`3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`
`3S = 1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`
`3S = 99.100.101`
`S = 33.100.101`
`S = 333300`
3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100
=99.100.101
S=33.100.101
=333300
Tính tổng 1.2+2.3+3.4+4.5+5.6+...+99.100 rồi kiểm tra xem tổng chia hết cho số nào sau đây:2;3;4;5;6;8;9;10;11
nhân 3 vào mỗi hạng tử ta được:
3*(1.2+2.3+3.4+...+99.100)
= 1.2.(3-0)+ 2.3.(4-1)+ 3.4.(5-2)+... + 99.100.(101-98)
=1.2.3 + 2.3.4 -1.2.3 + 3.4.5 -2.3.4 +... + 99.100.101 - 98.99.100
= 99.100.101
Vậy tổng ban đầu 99.100.101/3= 33.100.101
Vậy tổng trên chia hết cho 2;3;4;5;10
Tính tổng:
A=1.2+2.3+3.4+4.5+5.6+.........+98.99+99.100
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
Tính tổng S=1.2+2.3+3.4+4.5+5.6+...+99.100 ta được kết quả S=
cho A= 1.2 + 2.3 + 3.4 + 4.5 + .......+ 99.100
Hãy tính tổng A (ahihi)
\(A=1\cdot2+2\cdot3+3\cdot4+4\cdot5+...+99\cdot100\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+99\cdot100\cdot3\)
\(3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(3A=1\cdot2\cdot3-0+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...99\cdot100\cdot101-98\cdot99\cdot100\)
\(3A=98\cdot99\cdot100\Rightarrow A=\frac{98\cdot99\cdot100}{3}=...\)
Tính tổng:
\(S=1.2+2.3+3.4+4.5+.....+99.100\)
Ta có: \(S=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3S=1.2.3+2.3.3+3.3.4+....+99.100.3\)
\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)....99.100.\left(101-98\right)\)
\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(\Rightarrow3S=99.100.101\)
\(\Rightarrow S=\frac{99.100.101}{3}=\frac{999900}{3}=333300\)
S= 1.2 + 2.3 +... + 99.100
=>S= \(\frac{99.100.101}{3}\)=333300
\(S=1.2+2.3+3.4+4.5+...+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
Tính tổng
S=1.2+2.3+3.4+4.5+...+99.100
S=1.2+2.3+...+(n-1).n. (n thuộc N sao)
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)
Tính : S = 1.2 + 2.3 + 3.4 + 4.5 + .... + 99.100
S=1.2+ 2.3+4,5.......+99.100
Nhân cả 2 vế với 3, ta được:
3S=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
----> S = (99.100.101):3
S= 333300
Vậy A=333300
S = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100
S = 1.100
S = 100