cho a,b,c,d thuộc z tìm a+b=c+d.cmr a^2+b^2+c^2+d^2 là số chính phương
cho a,b,c,d thuộc z thỏa mãn ab+bc+ca=2019
cmr : ( a^2 + 2019) ( b^2 + 2019 ) ( c^2 + 2019) là số chính phương
cho a,b,c,d thuộc Z. CMR:
\(Q=[(a-c)^2-(b-d)^2]\times(a^2+b^2)-(ad-bc)^2\) là số chính phương
Cho a,b,c,d thuộc Z biết ab là số liền sau cd và a+b=c+d.Cmr a=b
trường hợp : ab = cd + 1
ta có a+ b = c + d
=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên
cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1
c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm
Trường hợp 2: ab = cd - 1: tương tự
Ta có:
\(a+b=c+d\)
\(\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
Mà \(d=a+b-c\) nên ta có:
\(ab-c.\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2\)
\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)
\(\Rightarrow\left(a-c\right)\left(b-c\right)=1\)
\(\Rightarrow a-c=b-c\)
\(\Rightarrow a=b\)
cho a,b thuộc n chứng minh rằng nếu a.b chia hết cho 2 thì tìm được số c thuộc z sao cho a^2+b^2+c^2 là số chính phương
cho a,b thuộc n chứng mình rằng nếu ab chia hết cho 2 thì tìm được số c thuộc z sao cho a^2+b^2+c^ là số chính phương
cho a,b thuộc n chứng minh rằng nếu a.b chia hết cho 2 thì tìm được số c thuộc z sao cho a^2+b^2+c^2 là số chính phương giải dùm mình nhanh lên nha
Bài5*:Cho đa thức f(x)=ax³+bx²+cx+d:trong đó a,b,c,d thuộc Z HM=b=3a+c C/m: f(1).f(2) là số chính phương
Thay b = 3a + c vào f(x) ta được:
f(x) = ax3 + (3a+c)x2 + cx + d
⇒ f(1) = a.13 + 3a + c.12+ c.1 + d
= a + 3a + c + c + d
= 4a + 2c + d
= 4a + 2c + d (1)
f(2) = a.23 + 3a + c.22 - c.2 + d
= 8a + 3a + 4c - 2c + d
= 4a + 2c + d (2)
Nhân vế cho vế của (1) và ( 2) ta được
F(1).F(2)=(4a+2c+d).(4a+3c+d)
=\(\left(4a+2c+d\right)^2\)
Vậy f(1).F(2) là số chính phương
Câu 1 :tìm x\(\sqrt{x-2\sqrt{3x-9}}\) =\(2\sqrt{x-3}\)
câu 2:chờ a,b,c,d là các số nguyên thỏa mãn a<b<c<d và a+b=b+c .CMR a^2 +b^2 +c^2+d^2 là tổng 3 số chính phương
câu 3 :cho tam giác vuông ABC ( A=90) ,AD là phân giác của A ( D thuộc BV chứng minh \(\frac{AD}{AB}+\frac{AD}{AC}=\sqrt{2}\)
câu4 :Tìm tất cả số tự nhiên sao cho \(n^2+17\) là số chính phương
Câu 5: cho 3 số dương x,y,z tổng =1 ,CMR : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}>hoặc=1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) làm giúp mình cái ,THANK YOU SO MUCH ,làm đc bão like
cho a/b=c/d.CMR: ab/cd=a^2=b^2/c^2-d^2 và (a+b/c+d)^2=a^2+b^2/c^2+d^2
bạn xem cái m đầu tiên đi nhé, mình thấy nó sao sao ấy, mình sẽ làm kia cho bạn
đặt
\(\dfrac{a}{b}=\dfrac{c}{d}=n\\ < =>\left\{{}\begin{matrix}a=bn\\c=dn\end{matrix}\right.\)
có
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\\ =\left(\dfrac{bn+b}{dn+d}\right)^2\\ =\left[\dfrac{b\left(n+1\right)}{d\left(n+1\right)}\right]^2\\ =\left(\dfrac{b}{d}\right)^2\left(1\right)\)
và
\(\dfrac{a^2+b^2}{c^2+d^2}\\ =\dfrac{\left(bn\right)^2+b^2}{\left(dn\right)^2+d^2}\\ =\dfrac{b^2n^2+b^2}{d^2n^2+d^2}\\ =\dfrac{b^2\left(n^2+1\right)}{d^2\left(n^2+1\right)}\\ =\dfrac{b^2}{d^2}\\ =\left(\dfrac{b}{d}\right)^2\left(2\right)\)
từ 1 và 2
=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
ko hiểu chỗ nào thì hỏi mình nhé, mình nói cho :)
chúc may mắn