Thay b = 3a + c vào f(x) ta được:
f(x) = ax3 + (3a+c)x2 + cx + d
⇒ f(1) = a.13 + 3a + c.12+ c.1 + d
= a + 3a + c + c + d
= 4a + 2c + d
= 4a + 2c + d (1)
f(2) = a.23 + 3a + c.22 - c.2 + d
= 8a + 3a + 4c - 2c + d
= 4a + 2c + d (2)
Nhân vế cho vế của (1) và ( 2) ta được
F(1).F(2)=(4a+2c+d).(4a+3c+d)
=\(\left(4a+2c+d\right)^2\)
Vậy f(1).F(2) là số chính phương