cho 1/a+1/b+1/c=1/a+b+c tinh P= (a+b)(b^3+c^3)(c^5+a^5)
jup với
cho 1/a+1/b+1/c=1/a+b+c tinh P= (a+b)(b^3+c^3)(c^5+a^5)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+abc+abc+b^2c+bc^2+a^2c+abc+ac^2-abc=0\)
\(\Leftrightarrow ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
\(\circledast Với:a=-b\) , ta có :
\(P=\left(-b+b\right)\left(b^3+c^3\right)\left(c^5+a^5\right)=0\)
\(\circledast Với:b=-c\) , ta có :
\(P=\left(a+b\right)\left(b^3-b^3\right)\left(c^5+a^5\right)=0\)
\(\circledast Với:c=-a\) , ta có :
\(P=\left(a+b\right)\left(b^3+c^3\right)\left(-a^5+a^5\right)=0\)
KL..............
1.tìm x
1x.(x+7)=0
2(x+12).(x-3)=0
3(-x+5).(3-x)
4x.(2+x).(7-x)=0
5(x-1).(x+2).(-x-3)=0
2.CHỨNG TỎ
1(a-b+c)-(a+c)=-b
2(a+b)-(b-a)+c=2a+c
3-(a+b-c)+(a-b-c)=-2b
4a.(b+c)-a.(b+d)=a.(c-d)
5a.(b-c)+a(d+c)=a.(b+d)
KÊU GỌI CỘNG ĐÒNG JUP TUI VS
JUP ĐC BÀI NÀO THÌ JUP NHOA
\(x\left(x+7\right)=0\)
\(x=0;-7\)
từ từ gửi hết cho
\(\left(x+12\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(\left(-x+5\right)\left(3-x\right)\)thiếu nha bn
\(x\left(2+x\right)\left(7-x\right)=0\)
\(x=0;-2;7\)
\(\left(x-1\right)\left(x+2\right)\left(-x-3\right)=0\)
\(x=1;-2;3\)
\(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tinh \(S=a^2+b^{2012}+c^{2013}\)
Mk dang can gap jup mk nha
Tính giá trị biểu thức
a)A=a^5+1/a^5 với a+1/a=3
b)B=(a/b+c)+(b/c+a)+(c/a+b) với a+b+c=2013 và 1/a+b+1/b+c+1/c+a=1/3
(Câu 6)
a) \(a+\frac{1}{a}=3\)
\(\Leftrightarrow\)\(\left(a+\frac{1}{a}\right)^2=9\)
\(\Leftrightarrow\)\(a^2+2+\frac{1}{a^2}=9\)
\(\Leftrightarrow\)\(a^2+\frac{1}{a^2}=7\)
Ta có: \(\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=3.7\)
\(\Leftrightarrow\)\(a^3+\frac{1}{a}+a+\frac{1}{a^3}=21\)
\(\Leftrightarrow\)\(a^3+\frac{1}{a^3}=21-3=18\)
Ta lại có: \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=7.18\)
\(\Leftrightarrow\)\(a^5+\frac{1}{a}+a+\frac{1}{a^5}=126\)
\(\Leftrightarrow\)\(a^5+\frac{1}{a^5}=126-3=123\)
cho a,b,c thuoc Q thoa man a+b-c/c=a+c-b/b=c+b-a/a. tinh P=(1+a/b).(1+b/c).(1+c/b)
3 khoi A,B,C cho duoc 912m3 dat. So hoc sinh khoiA,B ti le voi 1 va 2. So hc sinh khoi B va C ti le 4 va 5. Trung binh moi hoc sinh khoi A,B,C cho duoc ti le 1,2; 1,4;1,6 m3 dat. Tinh so hoc sinh moi khoi
Tham khảo ở đây : /hoi-dap/question/77428.html
Giúp với ạ.
1. Cho 1/a + 1/b + 1/c = 0
Tính P = ab/c^2 + bc/a^2 + ca/b^2
2. Cho a^3 + b^3 + c^3 =3abc
CMR: a. x+y+z=0 b. x=y=z
3. Cho (a+b+c)(1/a+1/b+1/c)=1
Tính P=(a^23+b^23)(b^5+c^5)(a^2017+c^2017)
Thanks ạ
Xin lỗi mình nhập bị nhầm. Này là toán 8 ạ
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
cần giúp
1.Cho a,b,c>0. CMR:\(\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge a^3+b^3+c^3\)
2.Cho a,b,c>0. CMR: \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{1}{3}\left(a^2+b^2+c^2\right)\)
3.Cho a,b,c thỏa mãn a+b+c=3. CMR: \(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge2\)
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)