Cho x,y > 0 thỏa 3x + y <= 1
Tìm GTNN của:
\(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\)
Cho 3 số hữu tỉ x, y, z thỏa mãn với xyz(3x + y + z)(3y + z + x)(3z + x + y) \(\neq\) 0 thỏa mãn điều kiện \(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}\). Tính giá trị biểu thức:
A = \(\left(2+\dfrac{y+z}{x}\right)\left(2+\dfrac{z+x}{y}\right)\left(2+\dfrac{x+y}{z}\right)\)
Xét \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)
\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)
Xét \(x+y+z\ne0\) thì ta có:
\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)
\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)
Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)
Nếu bị lỗi thì bạn có thể xem đây nhé:
cho x,y,z khác 0 thỏa mãn 3x+y+z/x = x+3y+z/y = x+y+3z/z. Tính M= (x+y).(y+z).(z+y)/x.y.z
kkgkirtgkjssykjhskfsrlhklruwo8tiyfieusykdkwirkuiufysoiiyi
Tích trên có số thừa số:
(2012 - 2) : 10 + 1 = 202 (thừa số)
Cứ 4 thừa số thì đem lại cho ta tích có tận cùng là 6.
Mà 202 : 4 = 50 (dư 2)
Khi đó:
(2 x 12 x 22 x 32) x ... x (1962 x 1972 x 1982 x 1992) x 2002 x 2012
Vậy tận cùng của tích là: 6x2x2 có tận cùng là 4.
Câu 2:
Gọi ba số phải tìm là x,y,z
Ta có: x + y + z = 321,95 và 3x = 4y = 5z
Từ 3x = 4y = 5z
Cho ta:
x(13)=y(14)=z(15)=(x+y+z)(13+14...)x(13)=y(14)=z(15)=(x+y+z)(13+14...)(dãy tỉ số bằng nhau)
Do đó: x(13)=411→x=137x(13)=411→x=137
y = 102,75
z = 82,2
Vậy, .....
bay tào lao nhề phải là !@#$%^^*&&^^%^$##@!@#$$%
thế mới ngon lành độc lạ ko đụng hàng
cho 2 số x, y thỏa mãn 3x=2y và x≠0, y≠0 rút gọn biểu thức P =\(\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\)
giúp e với ạ
3x=2y
nên x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
\(P=\dfrac{\left(2k\right)^2-2k\cdot3k+\left(3k\right)^2}{\left(2k\right)^2+2k\cdot3k+\left(3k\right)^2}\)
\(=\dfrac{4k^2-6k^2+9k^2}{4k^2+6k^2+9k^2}=\dfrac{4-6+9}{4+6+9}=\dfrac{7}{19}\)
Cho x>0,y>0 thỏa mãn x+y>=6. Hãy tính GTNN của biểu thức:
M=3x + 2y+ 6/x + 8/y
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
cho x,y>0 thỏa mãn 10x^2 +xy =3y^2
tính giá trị của biểu thức
M= 2x-y/3x-y + 5y-x/3x+y
Cho x>0, y>0 thỏa mãn xy=6. Tìm GTNN của biểu thức Q= 2/x +3/y + 6/3x+2y
Cho ba số thực x, y, z thỏa mãn đồng thời các biểu thức: x + 2 y + 3 z - 10 = 0 , 3 x + y + 2 z - 13 = 0 và 2 x + 3 y + z - 13 = 0 . Tính T = 2 ( x + y + z ) ?
A. T = 12
B. T = -12
C. T = -6
D. T = 6
cho x,y thuộc R và x,y >0 thỏa mãn: x^2-2xy+x-2y<0 Tìm GTLN của A= x^2 -5y^2 +3x
mik chỉ giải được khi bé hơn hoặc bằng 0 thôi bạn thông cảm nha
x^2-2xy+x-2y<hoặc bằng 0
x(x+1)-2y(x+1)<hoặc bằng 0
(x+1)(x-2y)< hoăc bằng 0
mà x+1>0 do x>0
nên x-2y < hoặc bằng 0
x<hoặc bằng 2y suy ra 3x bé hơn hoặc bằng 6y
A=x^2-5y^2+3x
=x^2-4y^2-y^2+3x
=(x-2y)(x+2y)-y^2+3x < hoặc bằng (x-2y)(x+2y)-y^2+6y-9+9 =(x-2y)(x+2y)-(y-3)^2+9 bé hơn hoặc bằng 9 do cả hai cái tích và bình phương trên đều bé hơn hoặc bằng 0
suy ra GTLN của A=9 tại y=3,x=6
Cho 2 số thực x,y thỏa mãn 6x^2+y(y+2x)=9xy và 3x>y>0.Tính P=xy/2024x^2-y^2
Bài 5 : Cho ( x , y ) nguyên thỏa mãn :
xy + 3x + 2y - 5 = 0
Tính x + y ?
Ta có:
xy + 3x + 2y - 5 = 0
=> x(y + 3) + 2(y + 3) = 11
=> (x + 2)(y + 3) = 11
=> x + 2; y + 3 \(\in\)Ư(11) = {1; -1; 11; -11}
Lập bảng :
x + 2 | 1 | -1 | 11 | -11 |
y + 3 | 11 | -11 | 1 | -1 |
x | -1 | -3 | 9 | -13 |
y | 8 | -14 | -2 | -4 |
x + y | 7 | -17 | 7 | -17 |
Vậy ...
xy + 3x + 2y - 5 = 0
x . ( y + 3 ) + 2 . ( y + 3 ) = 11
( y + 3 ) . ( x + 2 ) = 11
\(\Rightarrow\)y + 3, x + 2 \(\in\) Ư( 11 ) = { ± 1; ± 11 }
y + 3 | 1 | -1 | 11 | -11 |
y | -2 | -4 | 8 | -14 |
x + 2 | 11 | -11 | 1 | -1 |
x | 9 | -13 | -1 | -3 |
x + y | 7 | -17 | 7 | -17 |
Vậy...
P/s: Ko chắc :(
đúng 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%