phân tích đa thức thành nhân tử:
x^4-4xy+4y^2-2x+4y-35
phân tích đa thức thành nhân tử: x^2-4xy+4y^2-2x+4y-35
phân tích đa thức thành nhân tử: x^2-4xy+4y^2-2x+4y-35
Phân tích đa thức sau thành nhân tử:
x^2/4+2xy+4y^2
\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)
phân tích đa thức sau thành nhân tử:x^4-5x^2y^2+4y^4
\(x^4-5x^2y^2+4y^4\)
\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)
phân tích thành đa thức nhân tử
a, (x^2 + 2x)^2 + 9x^2 + 18x + 20
b, x^3 + 2x - 3
c, x^2 - 4xy + 4y^2 - 2x + 4y - 35
a. \(\left(x^2+2x\right)^2+9x^2+18x+20=x^4+4x^3+13x^2+18x+20\)
\(=x^4+2x^3+2x^3+5x^2+4x^2+4x^2+8x+10x+20\)
\(=x^2\left(x^2+2x+5\right)+2x\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
Lưu ý: có thể dùng phương pháp đồng nhất hệ số dưới dạng \(\left(x^2+ax+5\right)\left(x^2+bx+4\right)\) khi thực xong bước 1
b. \(x^3+2x-3=x^3+x^2-x^2+3x-x-3=x\left(x^2+x+3\right)-\left(x^2+x+3\right)=\left(x-1\right)\left(x^2+x+3\right)\)
c. \(x^2-4xy+4y^2-2x+4y-35=\left(x-2y\right)^2-2\left(x-2y\right)+1-36=\left(x-2y-1\right)^2-6^2\)
\(=\left(x-2y-1-6\right)\left(x-2y-1+6\right)=\left(x-2y-7\right)\left(x-2y+5\right)\)
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
phân tích đa thức sau thành nhân tử:
a) x5 + x + 1
b) x2 - 4xy + 4y2 - 2x + 4y - 35
c) x4 - 5x2y2 + 4y2
Phân tích đa thức thành nhân tử (đặt ẩn phụ )
a, x^2+2xy+y^2+2x+2y-15
b, x^2 - 4xy+4y^2-2x-4y-35
c, 6x^4 - 5x^3+8x^2-5x+6
d, x^4+2x^3+2x^2+10x+25
Mong các bạn giúp mình ạ !!
a, x2+2xy+y2+2x+2y-15
<=> (x+y )2+2(x+y)+1-16
Đặt x+y =a
<=> a2+2a+1-42
<=> (a+1)2-42
<=> (a+5)(a-3) =>( x+y+5)(x+y-3)
b, x2-4xy+4y2-2x-4y-35
<=> (x-2y)2-2(x-2y)+1-36
Đặt (x-2y) =b
=> b2-2b+1-62
<=> (b-1)2-62
<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)
c,
a,A= x^2+2xy+y^2+2x+2y-15
= (x+y)^2+(x+y)-15
Đặt x+y=a, ta có:
A=a^2+2a-15
=a^2+2a+1-16
=(a+1)^2-4^2
=(a+1+4)(a+1-4)
=(a+5)(a-3)
Thay a=x+y, ta có: A=(x+y+5)(x+y-3).
b,B= x^2 - 4xy+4y^2-2x-4y-35
Hình như là sai đề đó bạn. Phải là x^2 - 4xy+4y^2-2x+4y-35 hoặc x^2 - 4xy+4y^2+2x-4y-35 hoặc x^2 + 4xy+4y^2-2x-4y-35 mới đúng đó bạn. Bạn xem lại đi nha.
c,C=6x^4 - 5x^3+8x^2-5x+6
C= x^2(6x^2-5x+8-5/x+6/x^2)
=x^2(6(x^2+2+1/x^2)-5(x+1/x)-4)
=x^2(6(x+1/x)^2-5(x+1/x)-4)
Đặt x+1/x=a, ta có:
C=x^2(6a^2-5a-4)
=x^2(6a^2+3a-8a-4)
=x^2(2a+1)(3a-4)
Thay a=x+1/x vào là được bạn nhé.
Phân tích đa thức thành nhân tử:
a)x3-8x2+16x
b)x2+4y2+2x-4y-4xy-24
c)x4+x3-x2-2x-2
`a)x^3-8x^2+16x`
`=x(x^2-8x+16)`
`=x(x-4)^2`
`b)x^2+4y^2+2x-4y-4xy-24`
`=(x-2y)^2+2(x-2y)-24`
`=(x-2y)^2-4(x-2y)+6(x-2y)-24`
`=(x-2y-4)(x-2y+6)`
`c)x^4+x^3-x^2-2x-2`
`=x^4-2x^2+x^3-2x+x^2-2`
`=x^2(x^2-2)+x(x^2-2)+x^2-2`
`=(x^2-2)(x^2+x+1)`