chứng minh rằng (2^9-1) chia hết cho 73
Chứng minh rằng
29-1 chia hết cho 73
56-104 chia hết cho 9
Chứng minh rằng:
a) 29 - 1 chia hết cho 73
b) 56- 104 chia hết cho 9
a) 29 - 1 = 83 - 1 = (8 - 1)(82+8+1) = 7*73 chia hết cho 73.
b) 56 - 104 = 54*(52 - 24) = 54 *(25 - 16) = 54 *9 chia hết cho 9.
Chứng minh :
a) ( 2^9 -1 ) chia hết cho 73
b) n^6 - 10^4 chia hết cho 9
a: \(=\left(2^3-1\right)\left(2^6+2^3+1\right)=73\cdot7⋮73\)
b: Đề sai rồi bạn
Chứng minh rằng 1+8+8^2+.....+8^800 chia hết cho 73
Chứng minh: (29-1) chia hết cho 73
29 đồng dư với 1(mod 73)
=>29-1 đồng dư với 0(mod 73)
=>29-1 chia hết cho 73
=>đpcm
Chứng minh:
a) 2 9 -1 chia hết cho 73; b) 5 6 - 10 4 chia hết cho 9.
Chứng minh rằng:
A= 8 + 82+ 83 +. . . + 82019
Chia hết cho 8; 9; 72; 73.
Ta có :
A chia hết cho 8 vì mọi số hạng của A deduf chia hết cho 8 .
\(A=8+2^2+....+8^{2019}\)
\(\Rightarrow A=8\left(1+8\right)+.....+8^{2018}\left(1+8\right)\)
\(\Rightarrow A=8.9+.....+8^{2018}.9\)
=> A chia hết cho 9 .
Mà (8;9)=1
=> A chia hết cho 8x9=72
\(A=8\left(1+8+8^2\right)+....+8^{2017}\left(1+8+8^2\right)\)
\(A=8.73+....+8^{2017}.73\)
=> A chia hết cho 73
Chứng minh rằng:
a) 29- 1 chia hết cho 73
b) 56 - 104 chia hết cho 9
Khó quá! Mình chưa hiểu dạng này! Giúp mình với nhé! Mình cảm ơn!
Cho S = 1+3+3^2+3^3+3^4+3^5+3^6+3^73^8+3^9. Chứng tỏ rằng S chia hết cho 4
\(S=\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+...+3^8\right)⋮4\)