phan tich da thuc thanh nhan tu
3x^4-48
x^4-8x
x^3-6x^2+9x
x^4+x^3-9x^2+10x-8 phan tich da thuc thanh nhan tu
Thay `x = 2` ta được :
`x^4+x^3-9x^2+10x-8`
`= 2^4 + 2^3 - 9*2^2 + 10*2 - 8`
`= 16 + 8 - 36 + 20 - 8`
`= 0`
Vậy `x = 2` là nghiệm của phương trình trên
Do đó ta thực hiện phép chia :
\(\left(x^4+x^3-9x^2+10x-8\right):\left(x-2\right)\)
Vậy \(x^4+x^3-9x^2+10x-8=\left(x-2\right)\left(x^3+3x^2-3x+4\right)\).
phan tich da thuc thanh nhan tu 6x4+x3-3x2-17x-5
phan tich da thuc thanh nhan tu d/ (x^2 +6x+8) (x^2+8x+15)-24
(x2 + 2.x.3 + 32 - 1).(x2 + 2.x.4 + 16 - 1) - 24
=[(x+3)2 - 1]. [(x+4)2-1] -24
=(x+3+1)(x+3-1)(x+4+1)(x+4-1) - 24
=(x+4)(x+2)(x+5)(x-3) - 24
(x2+6x+8)(x2+8x+15)-24
<=>(x2+4x+2x+8)(x2+5x+3x+15)-24
<=> [x(x+4)+2(x+4)][x(x+5)+3(x+5)]-24
<=> (x+4)(x+2)(x+5)(x+3)-24
<=> (x+4)(x+3)(x+2)(x+5)-24
<=>(x2+7x+12)(x2+7x+10)
đặt t=x2+7x+11 ta có:
(t-1)(t+1)-24
<=> t2-1-24
<=>t2-25
<=>(t-5)(t+5)
thay t=x2+7x+11 vào ta có:
(x2+7x+11-5)(x2+7x+11+5)
<=>(x2+7x+6)(x2+7x+16)
Phan tich da thuc thanh nhan tu
( x^2-6x+ 8)( x^2-8x +15) +1
Phan tich da thuc thanh nhan tu
(X^2-6x+8)(x^2-8x+15)+1
phan tich da thuc thanh nhan tu
a) x^3+x+2
b) x^3+3x^2-4
c) x^4+x^3+6x^2+5x+5
a)\(3x^2-11x+6=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(3x-2\right)\left(x-3\right)\)
b)\(8x^2+10x-3=8x^2+12x-2x-3=4x\left(2x+3\right)-\left(2x+3\right)=\left(4x-1\right)\left(2x+3\right)\)
c)\(8x^2-2x-1=8x^2+2x-4x-1=2x\left(4x+1\right)-\left(4x+1\right)=\left(2x-1\right)\left(4x+1\right)\)
phan tich da thuc thanh nhan tu
a, 9x2+6x-2
b, x2+9x+x2+9
c,x3+9x+x2+9
d, (x2+8x+7)(x2+8x+15)+15
phan tich da thuc thanh nhan tu 3x^4-48
\(3x^4-48=3\left(x^4-16\right)=3\left[\left(x^2\right)^2-4^2\right]\\ =3\left(x^2-4\right)\left(x^2+4\right)\\ =3\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
Phan tich da thuc thanh nhan tu
3x^2-11x+6
x^2-6x+5
x^4+x^2+1
x^4-4x^2+3
6x^2+7xy+2y^2
(*)\(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(x-3\right)\left(3x-2\right)\)
(*)\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-5\right)\left(x-1\right)\)
(*)\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+1+x\right)\left(x^2+1-x\right)\)
(*)\(x^4-4x^2+3=x^4-x^2-3x^2+3=x^2\left(x^2-1\right)-3\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
(*)\(6x^2+7xy+2y^2=6x^2+4xy+3xy+2y^2=2x\left(3x+2y\right)+y\left(3x+2y\right)=\left(2x+y\right)\left(3x+2y\right)\)
a, \(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(3x-2\right)\left(x-3\right)\)
b, \(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
c, \(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
d, \(x^4-4x^2+3=x^4-4x^2+4-1=\left(x^2-2\right)^2-1=\left(x^2-1\right)\left(x^2-3\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
e, \(6x^2+7xy+2y^2=6x^2+3xy+4xy+2y^2=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)