cho Δ ABC vuông tại A, đường cao AH, biết HB:HC=9:16.AH=48cm.Tính AB,AC
Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM.
a) Biết AH=48cm và HB:HC = 9:16 tính AB, AC, BC, AM
b) Biết BC=125cm và AB:AC = 3:4 tính sdooj dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền
em học lớp 7 nên không biết làm đúng cho em đi
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac
Cho Δ ABC vuông tại A , biết AB = 6cm ; AC = 8cm . Vẽ đường cao AH a) Đường phân giác của góc B cắt AH và AC lần lượt tại I và D . Chứng minh Δ AID cân b) Kẻ HK song song với BD ( K thuộc AC ) . Chứng minh AD ² = DK . DC
làm dùm mình nha các bạn có hình của đường cao ah xong kẻ thêm những chi tiết của câu a và b nha
1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm
Tính AH,AD làm tròn đến chữ số thập phân thứ 2
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD
4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm
a) tính các cạnh của tam giác ABC
b) đường trung trục của AC cắt AH tai O tính OH
cho tam giác ABC vuông tại A, đường cao AH,biết AB=24cm,HB/HC=9/16.Tính AC,BC,AH
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.CB$
$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$
$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$
$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)
Cho Δ ABC vuông tại A , đường cao AH ( H thuộc BC )
a) Tính BH , AH biết AB =20cm ,BC=25cm
b) Từ B kẻ đường thẳng vuông góc với đường trung tuyến AD của tam giác ABC tại E cắt AC tại F . Chứng Minh Δ BHF đồng dạng với Δ BEC
giải chi tiết giúp mk vớiiiiii ạ
cho Δ ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH, H∈ BC).
a) Chứng minh: ΔHBA ഗΔ ABC
b) Tính độ dài các đoạn thẳng BC, AH
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)
hay \(\dfrac{AH}{16}=\dfrac{12}{20}\)
\(\Rightarrow AH=\dfrac{16.12}{20}=9,6\left(cm\right)\)
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Cho Δ ABC vuông tại A có AH là đường cao ( H thuộc cạnh BC ) . Biết AB = 21cm , AC = 28cm . a) Tính độ dài các Cạnh BC , BH . b) Chứng minh : Δ ABH đồng dạng Δ CBA
a: BC=căn 21^2+28^2=35cm
BH=AB^2/BC=21^2/35=12,6cm
b: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA