Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
quynhanhshyn5
Xem chi tiết
Nguyễn Văn Tân
23 tháng 10 2015 lúc 11:44

câu hỏi tương tự nhé !

Đúng 3 cho mình nhé các bạn !

VAN VIP PRO 3C
23 tháng 10 2015 lúc 11:51

câu hỏi tương tự

Vũ Tô Minh
Xem chi tiết
OH-YEAH^^
10 tháng 8 2021 lúc 9:35

Ta có: x:y:z =4:5:6

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\)

\(\dfrac{x^2}{16}=\dfrac{2y^2}{50}=\dfrac{z^2}{36}\)

\(\dfrac{x^2-2y^2+z^2}{16-50+36}=\dfrac{18}{2}=9\)

\(\dfrac{x}{4}=9\Rightarrow x=36\)

\(\dfrac{y}{5}=9\Rightarrow y=45\)

\(\dfrac{z}{6}=9\Rightarrow z=54\)

 

Cá cầm phóng lợn Top 1
Xem chi tiết
Hà Quang Minh
20 tháng 9 2023 lúc 20:35

Đề bài yêu cầu gì vậy em.

le thi thu huyen
Xem chi tiết
Tuấn Anh Phạm
8 tháng 8 2017 lúc 23:06

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

Nguyễn Hữu Quang
Xem chi tiết

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

c,

(\(x\) + y + z)3 

=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3

\(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 +  3(\(x\)+y)z(\(x\) + y + z) + z3

\(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))

\(x^3\) + y3 + z+ 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)

\(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}

\(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}

\(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)

 

 

Xem chi tiết
Linh An Trần
Xem chi tiết
Linh An Trần
Xem chi tiết
Nguyễn Lê Diệu Linh
26 tháng 11 2017 lúc 20:09

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

Nguyễn Nam
29 tháng 11 2017 lúc 19:38

1) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^3-x^3y^2+y^2z^3-y^3z^2-z^2x^2\left(z-x\right)\)

\(=\left(y^2z^3-x^3y^2\right)-\left(y^3z^2-x^2y^3\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(z^3-x^3\right)-y^3\left(z^2-x^2\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(z^2+zx+x^2\right)-y^3\left(z-x\right)\left(z+x\right)-z^2x^2\left(z-x\right)\)

\(=\left(z-x\right)\left[y^2\left(z^2+zx+x^2\right)-y^3\left(z+x\right)-z^2x^2\right]\)

\(=\left(z-x\right)\left[\left(y^2z^2+xy^2z+x^2y^2\right)-\left(y^3z+xy^3\right)-z^2x^2\right]\)

\(=\left(z-x\right)\left(y^2z^2+xy^2z+x^2y^2-y^3z-xy^3-z^2x^2\right)\)

\(=\left(z-x\right)\left[\left(y^2z^2-y^3z\right)-\left(x^2z^2-x^2y^2\right)+\left(xy^2z-xy^3\right)\right]\)

\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z^2-y^2\right)+xy^2\left(z-y\right)\right]\)

\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z-y\right)\left(z+y\right)+xy^2\left(z-y\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[y^2z-x^2\left(z+y\right)+xy^2\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y^2z-x^2z-x^2y+xy^2\right)\)

\(=\left(z-x\right)\left(z-y\right)\left[\left(y^2z-x^2z\right)-\left(x^2y-xy^2\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[z\left(y^2-x^2\right)-xy\left(x-y\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left[z\left(y-x\right)\left(y+x\right)+xy\left(y-x\right)\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left[z\left(y+x\right)+xy\right]\)

\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left(yz+xz+xy\right)\)

Nguyễn Nam
29 tháng 11 2017 lúc 20:03

2) \(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)

\(=xyz-xy-yz-xz+x+y+z-1\)

\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(xz-x\right)+\left(z-1\right)\)

\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)

\(=\left(z-1\right)\left(xy-y-x+1\right)\)

\(=\left(z-1\right)\left[\left(xy-y\right)-\left(x-1\right)\right]\)

\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)

hoàng thành
Xem chi tiết
hoàng thành
6 tháng 7 2023 lúc 15:15

phân tích đa thức thành nhân tử