1.Tìm x:
96-3(x.1)=42
2.Cho a-b=8.Tính:
a.7a-7b
b.9a-3b+9b-3a
Cho 3 số nguyên dương a,b,c thoả mãn 9a^2+3b+3c+1, 9b^2+3a+3b+1mđều là cái số chính phương. Chứng minh a=b=c
Cho a>b so sánh:
a) a+7 và b+7
b) a-7 và b-7
c) 7a và 7b
d) -7a và -7b
e) 2a-9 và 2b-9
f) 5-9a và 5-9b
g) 5a-7 và 5a+3
h) -9a+2 và -9a+1
cho a;b;c>0 thỏa mãn abc=1.Tìm Max của bt:
\(A=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Ngoài http://olm.vn/hoi-dap/question/779981.html còn cách khác
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(9a^3+3a^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow A\le\text{∑}\frac{a\left(\frac{1}{9a}+\frac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\text{∑}\left(\frac{1}{9}+\frac{a}{3}+ac\right)\)
\(=\frac{1}{3}+\frac{a+b+c}{3}+\text{∑}ab\le\frac{1}{3}+\frac{1}{3}+\frac{\left(a+b+c\right)^2}{3}=1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
a.b.c=1 thật hả. Rắc rối thế. Để nghĩ tiếp
cho a;b;c>0 thỏa mãn a+b+c=1.Tìm Max của bt:
\(A=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Áp dụng BĐT AM-GM ta có:
\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)
\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)
Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)
\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
tính nhanh
a) ( 9a^2 - 16b^2) : ( 4b - 3a )
b) (25a^2 - 30ab + 9b^2) : (3b - 5a )
c) ( 27a^3 - 27a^2 + 9a - 1) : (9a^2 - 6a + 1)
a,\(\dfrac{9a^2-16b^2}{4b-3a}=\dfrac{\left(3a-4b\right)\left(3a+4b\right)}{\text{4b-3a}}=-3a-4b\)
b,\(\dfrac{25a^2-30ab+9b^2}{3b-5a}=\dfrac{\left(5a-3b\right)^2}{3b-5a}=3b-5a\)
c,\(\dfrac{27a^3-27a^2+9a-1}{9a^2-6a+1}=\dfrac{27a^3-9a^2-18a^2+6a+3a-1}{9a^2-6a+1}=\dfrac{\left(3a-1\right)\left(9a^2-6a+1\right)}{9a^2-6a+1}=3a-1\)
\(\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+c}\) tìm max biết a+b+c=1
ĐỐ NHÉ!!!!!!!!!!!!
Cho a,b,c >0 và a+b+c=1. Tìm MAX
\(P=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Tính giá trị của biểu thức A= -a+b-1, biết 3a+7b/7a+3b =1
Cho 3a+7b/7a+3b =1 tinh C=-a+b-1
\(\dfrac{3a+7b}{7a+3b}=1\Leftrightarrow3a+7b=7a+3b\)
\(\Leftrightarrow3a=7a+3b-7b\)
\(\Leftrightarrow3a=7a-4b\)
\(\Leftrightarrow4b=7a-3a\)
\(\Leftrightarrow4b=4a\Leftrightarrow a=b\)
Như vậy \(C=-a+b-1=-a+a-1=0-1=-1\)