rut gọn 2x(2 x-1)^2-3x(x+3)(x-3) -4x(x+1)^2
Cho biểu thức A =(x+5)(4-3x)-(3x+2)^2+(2x+1)^3-(2x-1)(4x^2+2x+1)
a) Rut gọn bthức A
b) Tính A khi x=-3
c) Tìm x để A=0
Cho biểu thức A =(x+5)(4-3x)-(3x+2)^2+(2x+1)^3-(2x-1)(4x^2+2x+1)
a) Rut gọn bthức A
b) Tính A khi x=-3
c) Tìm x để A=0
rut gon bieu thuc a,(3x+2)^2+4x-3^2+2(5x-2)(5x+2)-75x^2
b,(x-2)^3+(2x+1)^3++2(x+2)(1-x)-9x^3+2x
a: \(\left(3x+2\right)^2+4x-3x^2+2\left(5x-2\right)\left(5x+2\right)-75x^2\)
\(=9x^2+12x+4+4x-3x^2+50x^2-8-75x^2\)
\(=-19x^2+16x-4\)
rut gon cac bieu thuc
2x(2x+1)2 - 3x(x+3)(x-3) - 4x (x+1) 2
Ta có 2x(2x + 1)2 - 3x(x + 3)(x - 3) - 4x(x + 1)2
= 2x(4x2 + 4x + 1) - 3x(x2 - 9) - 4x(x2 + 2x + 1)
= 8x3 + 8x2 + 2x - 3x3 + 27x - 4x3 - 8x2 - 4x
= 8x3 - 3x3 - 4x3 + 8x2 - 8x2 + 2x + 27x - 4x
= x3 + 25x
a oi hinh nhu sai r con +16x2 nua co a , anh tinh lai ho e duoc kh
Kiều Trinh Vũ ko có + 16x2 nhá vì 8x2 - 8x2 = 0 nhá
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
Tính (rút gọn )
1, 2x(3x-1)-(2x+1)(x-3)
2, 3(x^2-2x)-(4x+2)(x-1)
3, 3x(x-5)-(x-2)^2 -(2x+3)(2x-3)
4, (2x-3)^2+(2x-1) (x+4)
1) `2x(3x-1)-(2x+1)(x-3)`
`=6x^2-2x-2x^2+6x-x+3`
`=4x^2+3x+3`
2) `3(x^2-3x)-(4x+2)(x-1)`
`=3x^2-9x-4x^2+4x-2x+2`
`=-x^2-7x+2`
3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`
`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`
`=3x^2-15x-x^2+4x-4-4x^2+9`
`=-2x^2-11x+5`
4) `(2x-3)^2+(2x-1)(x+4)`
`=4x^2-12x+9+2x^2+8x-x-4`
`=6x^2-5x+5`
Rút gọn
a, (x-2).(3x-1).(3x+1)-2x.(4x-3)^2
b, ( 5x-7)^2 - ( 4x -3).(2x+3)^2- (x-3).(3x^2-5)
c, (2-5x)^2-4x.(3x+1)^2-(x-3).(x+3)
Rút gọn
a, (x-2).(3x-1).(3x+1)-2x.(4x-3)^2
b, ( 5x-7)^2 - ( 4x -3).(2x+3)^2- (x-3).(3x^2-5)
c, (2-5x)^2-4x.(3x+1)^2-(x-3).(x+3)
Bài 3: Cho hai đa thức:
P(x)= \(2x^3-2x+x^2+3x+2\)
Q(x)= \(4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
a) Rút gọn P(x),Q(x)
b) Chứng tỏ x=-1 là nghiệm của P(x),Q(x)
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
a, `P(x) = 2x^3 + x^2 + x + 2`.
`Q(x) = x^3 + x^2 + x + 1`.
`P(-1) = 0`
`Q(-1) = 0`
`=>` `-1` là nghiệm chung của `2` đa thức trên.