S=(1-1/4)*(1-1/9)*(1-1/16)*(1-1/25)*(1-36)
S = 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + 1/49 + 1/64 + 1/81
CMR: 2/2 < S < 8/9
S=1/4+1/9+1/16+1/25+1/36+1/49+1/64+1/81=1-1/81=1/81
vô lí vì 2/2 = 1 mà 8/9 < 1
(1-1/4).(1-1/9).(1-1/16).(1-1/25).(1-1/36)
Trả lời
(1-1/4).(1-1/9).(1-1/16).(1-1/25).(1-1/36)
=bước này thì bỏ ngoặc thôi, nên ko ghi lại nha
=1.(-1/4-1/9-1/16-1/25-1/36)
=1.(-900-400-225-144-100/3600)
=1.-1769/3600
=-1769/3600
Chắc sai òi !
\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).\left(1-\frac{1}{25}\right).\left(1-\frac{1}{36}\right)\)
\(=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.\frac{35}{36}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}.\frac{5.7}{6.6}\)
\(=\frac{1.2.3.4.5}{2.3.4.5.6}.\frac{3.4.5.6.7}{2.3.4.5.6}\)
\(=\frac{1}{6}.\frac{7}{2}\)
\(=\frac{7}{12}\)
G=(1-1/4)*(1-1/9)*(1-1/16)*(1-1/25)*(1-1/36)
tính: [1-1/4]* [1-1/9]*[1-1/16]*[1-1/25]*[1-1/36]
( 1 - 1/4 ) x ( 1 - 1/9 ) x ( 1 - 1/16 ) x ( 1 - 1/25 ) x ( 1 - 1/36 )
Tacó cho công thức tổng quát: A2 - B2 = (A+B).(A-B)
A = (1-1/4)x(1-1/9)x(1-1/16)x(1-1/25)x(1-1/3...
= (1+1/2) x (1-1/2) x (1+1/3) x (1-1/3) x...x (1+1/n) x (1-1/n)
= (1+1/2) x (1+1/3) x (1+1/4) x ... x [1 + 1/(n-1) ] x (1 + 1/n)
x (1-1/2) x (1-1/3) x (1-1/4) x ... x [1 - 1/(n-1) ] x (1 - 1/n)
= 3/2 x 4/3 x 5/4 x ... x [ n/(n-1) ] x [ (n+1)/n ]
x 1/2 x 2/3 x 3/4 x ... x [ (n-2)/(n-1) ] x [ (n-1)/n]
Vậy dãy A là:
A = 1/2 x 2/3 x 3/2 x 3/4 x 4/3 x 4/5 x 5/4 x .... x [ (n-2)x(n-1) ] x [ (n-1)/n] x [ n/(n-1)] x [ (n+1)/n]
= 1/2 x 1 x 1 x 1 x ... x 1 x [(n+1)/n]
(1-1/4)x(1-1/9)x(1-1/16)x(1-1/25)x(1-1/36)=
\(\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{9}\right)\times\left(1-\frac{1}{16}\right)\times\left(1-\frac{1}{25}\right)\times\left(1-\frac{1}{36}\right)\)
\(=\)\(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times\frac{35}{36}\)
\(=\)\(\frac{3\times8\times15\times24\times35}{4\times9\times16\times25\times36}\)
\(=\)\(\text{}\text{}\text{}\text{}\text{}\text{}\frac{\text{}\text{}\text{}\text{}\text{}\text{}3\text{}\text{}\text{}\text{}\text{}\text{}\times4\text{}\text{}\text{}\text{}\text{}\text{}\times2\text{}\text{}\text{}\text{}\text{}\text{}\times5\text{}\text{}\text{}\text{}\text{}\text{}\times3\text{}\text{}\text{}\text{}\text{}\text{}\times6\text{}\text{}\text{}\text{}\text{}\text{}\times4\text{}\text{}\text{}\text{}\text{}\text{}\times5\text{}\text{}\text{}\text{}\text{}\text{}\times7}{4\text{}\text{}\text{}\text{}\text{}\text{}\times3\text{}\text{}\text{}\text{}\text{}\text{}\times3\text{}\text{}\text{}\text{}\text{}\text{}\times8\text{}\text{}\text{}\text{}\text{}\text{}\times2\text{}\text{}\text{}\text{}\text{}\text{}\times5\text{}\text{}\text{}\text{}\text{}\text{}\times5\text{}\text{}\text{}\text{}\text{}\text{}\times6\text{}\text{}\text{}\text{}\text{}\text{}\times6}\)
\(=\)\(\frac{7\text{}\text{}\text{}\times4}{8\times6}\)
\(=\)\(\frac{7\times4}{4\times2\times6}\)
\(=\)\(\frac{7}{2\times6}\)
\(=\)\(\frac{7}{12}\)
(1-1/4)x(1-1/9)x(1-1/16)x(1-1/25)x(1-1/36)
cho A = 1/4 + 1/9 + 1/16 + 1/25 +1/36 + 1/49 + 1/64 + 1/81 . Chứng tỏ A > 2/5
A=1/22+1/32+...+1/92
Ta có:1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10
⇒A>1/2.3+1/3.4+...+1/9.10
A>1/2-1/3+1/3-1/4+...+1/9-1/10
A>1/2-1/10
A>2/5(đpcm)
Ta có: A = 1/4 + 1/9 + 1/16 + 1/25 +1/36 + 1/49 + 1/64 + 1/81
Vì 1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10
=>A>1/2.3+1/3.4+...+1/9.10
=>A>1/2-1/3+1/3-1/4+...+1/9-1/10
=>A>1/2-1/10
=>A>2/5
Giải:
\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{25}+\dfrac{1}{36}+\dfrac{1}{49}+\dfrac{1}{64}+\dfrac{1}{81}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2} +\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(\dfrac{1}{5^2}=\dfrac{1}{5.5}>\dfrac{1}{5.6}\)
\(\dfrac{1}{6^2}=\dfrac{1}{6.6}>\dfrac{1}{6.7}\)
\(\dfrac{1}{7^2}=\dfrac{1}{7.7}>\dfrac{1}{7.8}\)
\(\dfrac{1}{8^2}=\dfrac{1}{8.8}>\dfrac{1}{8.9}\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(đpcm\right)\)
Chúc bạn học tốt!
so sánh A với 5/6 biết: A =1/4 + 1/9 + 1/16 + 1/25 + 1/36
>1/4+1/4+1/16+1/16+1/16
=2/4+3/16=11/16=66/96<80/96=5/6
vậy A<5/6