Tìm x biết: \(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\) (với n thuộc N*)
BT1:
a,\(\left(3x^2-51\right)^{2n}=\left(-24^{2n}\right)\)(n\(\in\)N*)
b,(x-3).(x-8) \(\le\)0
a: \(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}=24^{2n}\)
\(\Leftrightarrow3x^2-51=24\) hoặc 3x2-51=-24
=>3x2=75 hoặc 3x2=27
=>x2=25 hoặc x2=9
hay \(x\in\left\{5;-5;3;-3\right\}\)
b: =>x-3>=0 và x-8<=0
=>3<=x<=8
Cho n là số tự nhiên khác 0
Số giá trị của x thỏa mãn \(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\)
2
Tik cho mk nha..................cảm ơn rất nhiều
cho n là số tụ nhiên khác 0
số giá trị của x thỏa mãn \(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\) là
\(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\)
\(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\)
\(\Leftrightarrow3x^2-51=-24\)
\(\Leftrightarrow3x^2=27\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
(3x2 - 51)2n = (-24)2n
=> \(\orbr{\begin{cases}3x^2-51=-24\\3x^2-51=24\end{cases}=>\orbr{\begin{cases}3x^2=27\\3x^2=75\end{cases}}}\)
=>\(\orbr{\begin{cases}x^2=9\\x^2=25\end{cases}=>}\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
1. Tìm x;y nguyên tố biết : 59x + 46y=2004
2. CMR: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{1}{2^n}\) với n thuộc N*
a, 59x + 46y = 2004
Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn
=> x là số chẵn, mà x là số nguyên tố
=> x = 2
=> 2.59 + 46y = 2004
=> 46y = 2004 ‐ 118
=> 46y = 1886
=> y = 1886:46 => y = 41
Vậy x = 2; y = 41
cho f(x)=(x2+x+1)2+1 với mọi x thuộc N.
a)tìm x để f(x) là số tự nhiên
b)thu gọn:
Pn=\(\frac{f\left(1\right).f\left(3\right).....f\left(2n-1\right)}{f\left(2\right).f\left(4\right).....f\left(2n\right)}\) với n thuộc N*
Tìm n thuộc N, biết: \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}\frac{1}{2^n}\)
TÌm x biết
a) \(\left(3^x\right)^2\): 33 = \(\frac{1}{243}\)
b) \(\left(3x^2-51\right)^{2n}\)= \(\left(-24\right)^{2n}\)
Cho \(n\) là số tự nhiên khác 0. Số giá trị của \(x\) thỏa mãn \(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\)
\(\left(3x^2-51\right)^{2n}=\left(-24\right)^{2n}\)
\(\Rightarrow3x^2-51\in\left\{-24;24\right\}\)
+) \(3x^2-51=-24\)
=> 3x2 = -24 + 51
=> 3x2 = 27
=> x2 = 27 : 3
=> x2 = 9 = 32 = (-3)2
=> x \(\in\){-3; 3}.
+) \(3x^2-51=24\)
=> 3x2 = 24 + 51
=> 3x2 = 75
=> x2 = 75 : 3
=> x2 = 25 = 52 = (-5)2
=> x \(\in\){-5; 5}.
Vậy có 4 giá trị của x thỏa mãn.